Background: In patients with cystic fibrosis (CF), lung infection with mucoid Pseudomonas aeruginosa strains overexpressing the exopolysaccaride alginate is preceded by colonization with nonmucoid strains. We investigated the kinetics, impact of environmental signals, and genetics of P. aeruginosa alginate expression in a mouse model and in patients with CF.

Methods: Using indirect immunofluorescence, microarray technology and real-time reverse-transcription polymerase chain reaction, we assessed alginate gene expression during aerobic and anaerobic growth of the nonmucoid strain PAO1 in vitro, in a mouse lung-infection model and in sputum specimens from patients with CF infected with nonmucoid or mucoid P. aeruginosa strains.

Results: Anaerobic conditions increased the transcription of alginate genes in vitro and in murine lungs within 24 h. Alginate production by PAO1 in murine lungs and by nonmucoid P. aeruginosa strains in patients with CF was reversible after in vitro culture under aerobic conditions. A subpopulation of P. aeruginosa clones revealing stable alginate production was detected in murine lungs 2 weeks after infection.

Conclusions: Anaerobiosis and lung infection rapidly induce alginate production by gene regulation in nonmucoid P. aeruginosa. This trait may contribute to early persistence, leading to chronic P. aeruginosa infection once stable mucoid strains are generated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1317300PMC
http://dx.doi.org/10.1086/431516DOI Listing

Publication Analysis

Top Keywords

murine lungs
12
alginate production
12
aeruginosa
8
pseudomonas aeruginosa
8
alginate
8
patients cystic
8
cystic fibrosis
8
mouse model
8
lung infection
8
aeruginosa strains
8

Similar Publications

Chronic obstructive pulmonary disease (COPD) is a prevalent chronic inflammatory airway disease with high incidence and significant disease burden. R-loops, functional chromatin structure formed during transcription, are closely associated with inflammation due to its aberrant formation. However, the role of R-loop regulators (RLRs) in COPD remains unclear.

View Article and Find Full Text PDF

Superior Anti-Tumor Response After Microbeam and Minibeam Radiation Therapy in a Lung Cancer Mouse Model.

Cancers (Basel)

January 2025

Department of Radiation Oncology, TUM School of Medicine and Health and Klinikum rechts der Isar, University Hospital of the Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany.

Objectives: The present study aimed to compare the tumor growth delay between conventional radiotherapy (CRT) and the spatially fractionated modalities of microbeam radiation therapy (MRT) and minibeam radiation therapy (MBRT). In addition, we also determined the influence of beam width and the peak-to-valley dose ratio (PVDR) on tumor regrowth.

Methods: A549, a human non-small-cell lung cancer cell line, was implanted subcutaneously into the hind leg of female CD1 mice.

View Article and Find Full Text PDF

Studies have demonstrated that resveratrol exerts several pharmacological effects. However, the pharmacokinetic parameters are not completely established. This study describes the plasma pharmacokinetics and tissue distribution of resveratrol after administration by different routes and doses in rats.

View Article and Find Full Text PDF

While the pulmonary effects of regular waterpipe smoking (R-WPS) are well-defined, the impact of occasional waterpipe smoking (O-WPS) on the lungs remains less established. This study investigated the pulmonary toxicity and underlying mechanisms of O-WPS versus R-WPS following 6 months of exposure, focusing on histopathology, inflammation in the lung, bronchoalveolar lavage fluid (BALF), and plasma, as well as oxidative stress, genotoxicity, mitochondrial dysfunction, and the expression of mitogen-activated protein kinases (MAPKs) in lung homogenates. Exposure to both O-WPS and R-WPS resulted in significant histological changes, including increased numbers of alveolar macrophages and lymphocytes, as well as interstitial fibrosis.

View Article and Find Full Text PDF

Aldose Reductase: A Promising Therapeutic Target for High-Altitude Pulmonary Edema.

Int J Mol Sci

January 2025

Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China.

The Qinghai-Tibet Plateau, famously known as the "Roof of the World", has witnessed a surge in individuals traveling or working there. However, a considerable percentage of these individuals may suffer from acute mountain sickness (AMS), with high-altitude pulmonary edema (HAPE) being a severe and potentially life-threatening manifestation. HAPE disrupts the balance of intrapulmonary tissue fluid, resulting in severe lung function impairment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!