AIP1/Alix is a binding partner of Sendai virus C protein and facilitates virus budding.

J Virol

Department of Virology, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.

Published: July 2005

The C protein, an accessory protein of Sendai virus (SeV), has anti-interferon capacity and suppresses viral RNA synthesis. In addition, it is thought that the C protein is involved in virus budding because of the low efficiency of release of progeny virions from C-knockout virus-infected cells and because of the requirement of the C protein for efficient release of virus-like particles. Here, we identified AIP1/Alix, a host protein involved in apoptosis and endosomal membrane trafficking, as an interacting partner of the C protein using a yeast two-hybrid system. The amino terminus of AIP1/Alix and the carboxyl terminus of the C protein are important for the interaction in mammalian cells. Mutant C proteins unable to bind AIP1/Alix failed to accelerate the release of virus-like particles from cells. Furthermore, overexpression of AIP1/Alix enhanced SeV budding from infected cells in a C-protein-dependent manner, while the release of nucleocapsid-free empty virions was also enhanced. Finally, AIP1/Alix depletion by small interfering RNA resulted in suppression of SeV budding. The results of this study suggest that AIP1/Alix plays a role in efficient SeV budding and that the SeV C protein facilitates virus budding through interaction with AIP1/Alix.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1168738PMC
http://dx.doi.org/10.1128/JVI.79.14.8933-8941.2005DOI Listing

Publication Analysis

Top Keywords

virus budding
12
sev budding
12
protein
9
aip1/alix
8
sendai virus
8
protein facilitates
8
facilitates virus
8
protein involved
8
release virus-like
8
virus-like particles
8

Similar Publications

Engineering vaginal film platform for mucoadhesion and sustained drug release for HIV-1 prevention.

J Control Release

January 2025

Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Magee-Womens Research Institute, Pittsburgh, PA, USA; Department of Obstetrics, Gynecology & Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA. Electronic address:

User adherence contributes to the effectiveness of topical pre-exposure prophylactic products designed to protect against human immunodeficiency virus type 1 (HIV-1) infection. Long-acting approaches that do not require daily or coitally-dependent use could potentially improve user adherence. This study aims to develop a long-acting vaginal film to deliver an integrase inhibitor, MK-2048, for prevention of HIV-1 infection.

View Article and Find Full Text PDF

Interferon types-I/II (IFN-αβ/γ) secretions are well-established antiviral host defenses. The human immunodeficiency virus (HIV) particles are known to prevail following targeted cellular interferon secretion. CD4 T-lymphocytes are the primary receptor targets for HIV entry, but the virus has been observed to hide (be latent) successfully in these cells through an alternate entry route via interactions with LFA1.

View Article and Find Full Text PDF

This study aimed to develop patches containing quercetin-loaded microcapsules and to evaluate their in vitro and in vivo safety and efficacy in preclinical surveys. A set of in vitro experiments evidenced the virucidal activity of quercetin against the HSV-1-KOS (sensitive to acyclovir) and HSV-1-AR (resistant to acyclovir) strains, with improved outcomes upon the first. The patches presented a homogeneous aspect, were easily handled, had a suitable bioadhesion, and possessed mechanical properties of soft and weak material, besides a pH compatible with human skin.

View Article and Find Full Text PDF

Peptide-based therapeutics are gaining attention for their potential to target various viral and host cell factors. One notable example is Pep19-2.5 (Aspidasept), a synthetic anti-lipopolysaccharide peptide that binds to heparan sulfate proteoglycans (HSPGs) and has demonstrated inhibitory effects against certain bacteria and enveloped viruses.

View Article and Find Full Text PDF

The 'Viroporin' family comprises a number of mostly small-sized, integral membrane proteins encoded by animal and plant viruses. Despite their sequence and structural diversity, viroporins share a common functional trend: their capacity to assemble transmembrane channels during the replication cycle of the virus. Their selectivity spectrum ranges from low-pH-activated, unidirectional proton transporters, to size-limited permeating pores allowing passive diffusion of metabolites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!