Egress of herpes capsids from the nucleus to the plasma membrane is a complex multistep transport event that is poorly understood. The current model proposes an initial envelopment at the inner nuclear membrane of capsids newly assembled in the nucleus. The capsids are then released in cytosol by fusion with the outer nuclear membrane. They are finally reenveloped at a downstream organelle before traveling to the plasma membrane for their extracellular release. Although the trans-Golgi network (TGN) is often cited as a potential site of reenvelopment, other organelles have also been proposed, including the Golgi, endoplasmic reticulum-Golgi intermediate compartment, aggresomes, tegusomes, and early or late endosomes. To clarify this important issue, we followed herpes simplex virus type 1 egress by immunofluorescence under conditions that slowed intracellular transport and promoted the accumulation of the otherwise transient reenvelopment intermediate. The data show that the capsids transit by the TGN and point to this compartment as the main reenvelopment site, although a contribution by endosomes cannot formally be excluded. Given that viral glycoproteins are expected to accumulate where capsids acquire their envelope, we examined this prediction and found that all tested could indeed be detected at the TGN. Moreover, this accumulation occurred independently of capsid egress. Surprisingly, capsids were often found immediately adjacent to the viral glycoproteins at the TGN.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1168770 | PMC |
http://dx.doi.org/10.1128/JVI.79.14.8847-8860.2005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!