Circulating retinoids (vitamin A and its derivatives) are found predominantly as retinol bound to retinol-binding protein (RBP), which transports retinol from liver stores to target tissues, or as retinyl ester incorporated in lipoproteins of dietary origin. The transport of retinoids from maternal to fetal circulation is poorly understood, especially under conditions of inadequate dietary vitamin A intake. Here we present RBP-/- mice as a tunable model of embryonic vitamin A deficiency. This model has enabled us to analyze metabolic links between maternal nutrition and retinoid delivery to the fetus. Our data show that retinol-RBP is the primary contributor to fetal development, whereas retinyl ester are largely responsible for accumulation of fetal retinoid stores. Furthermore, these studies indicate the importance of embryonic RBP in distributing vitamin A to certain developing tissues under restrictive diets. We also show differences among developing tissues in their dependency on the embryonic retinol-RBP pathway. Finally, we demonstrate that accumulation of embryonic vitamin A stores does not depend on the expression of RBP in the fetal liver.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2005-0158DOI Listing

Publication Analysis

Top Keywords

embryonic vitamin
12
tunable model
8
model embryonic
8
vitamin deficiency
8
retinyl ester
8
developing tissues
8
vitamin
6
embryonic
5
pathways vitamin
4
vitamin delivery
4

Similar Publications

The Molecular Biology of Placental Transport of Calcium to the Human Foetus.

Int J Mol Sci

January 2025

Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton SO16 6YD, UK.

From fertilisation to delivery, calcium must be transported into and within the foetoplacental unit for intracellular signalling. This requires very rapid, precisely located Ca transfers. In addition, from around the eighth week of gestation, increasing amounts of calcium must be routed directly from maternal blood to the foetus for bone mineralisation through a flow-through system, which does not impact the intracellular Ca concentration.

View Article and Find Full Text PDF

Spontaneous Cloacal Prolapse in a Farm Ostrich (Struthio camelus): Case Management and Literature Review.

Vet Med Sci

January 2025

Department of Surgery and Obstetrics, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh.

Captive ratites, including the ostrich (Struthio camelus), are susceptible to various gastrointestinal conditions. However, spontaneous cloacal prolapse is a relatively less frequent diagnosis. This report details the clinical management of cloacal prolapse in an ostrich, including a brief literature review.

View Article and Find Full Text PDF

Signaling via retinoic acid receptors mediates decidual angiogenesis in mice and human stromal cell decidualization.

FASEB J

January 2025

Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA.

At the maternal-fetal interface, tightly regulated levels of retinoic acid (RA), the physiologically active metabolite of vitamin A, are required for embryo implantation and pregnancy success. Herein, we utilize mouse models, primary human cells, and pharmacological tools to demonstrate how depletion of RA signaling via RA receptor (RAR) disrupts implantation and progression of early pregnancy. To inhibit RAR signaling during early pregnancy, BMS493, an inverse pan-RAR agonist that prevents RA-induced differentiation, was administered to pregnant mice during the peri-implantation period.

View Article and Find Full Text PDF

APOL1 Modulates Renin-Angiotensin System.

Biomolecules

December 2024

Department of Medicine and Feinstein Institute for Medical Research, Zucker School of Medicine, Hempstead, NY 11549, USA.

Patients carrying APOL1 risk alleles (G1 and G2) have a higher risk of developing Focal Segmental Glomerulosclerosis (FSGS); we hypothesized that escalated levels of miR193a contribute to kidney injury by activating renin-angiotensin system (RAS) in the APOL1 milieus. Differentiated podocytes (DPDs) stably expressing vector (V/DPD), G0 (G0/DPDs), G1 (G1/DPDs), and G2 (G2/DPDs) were evaluated for renin, Vitamin D receptor (VDR), and podocyte molecular markers (PDMMs, including WT1, Podocalyxin, Nephrin, and Cluster of Differentiation [CD]2 associated protein [AP]). G0/DPDs displayed attenuated renin but an enhanced expression of VDR and Wilms Tumor [WT]1, including other PDMMs; in contrast, G1/DPDs and G2/DPDs exhibited enhanced expression of renin but decreased expression of VDR and WT1, as well as other PDMMs (at both the protein and mRNA levels).

View Article and Find Full Text PDF

Proteomics- and metabolomics-based analysis of the regulation of germination in Norway maple and sycamore embryonic axes.

Tree Physiol

January 2025

Laboratoire de Biologie du Développement, UMR 7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, CNRS, F-75005 Paris, France.

Norway maple and sycamore belong to the Acer genus and produce desiccation-tolerant and desiccation-sensitive seeds, respectively. We investigated the seed germination process at the imbibed and germinated stages using metabolomic and proteomic approaches to determine why sycamore seeds germinate earlier and are more successful at establishing seedlings than Norway maple seeds under controlled conditions. Embryonic axes and embryonic axes with protruded radicles were analyzed at the imbibed and germinated stages, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!