The hypoxia-inducible factor (HIF) is a key player in a transcriptional pathway that controls the hypoxic response of mammalian cells. Post-translational modification of the alpha subunit of HIF determines its half-life and activity. Among the multiple reported modifications, acetylation, by an acetyltransferase termed arrest-defective-1 protein (ARD1), has been reported to decrease HIF-1alpha stability and therefore impact on hypoxic gene expression. In contrast, we report that both overexpression and silencing of ARD1 had no impact on the stability of HIF-1alpha or -2alpha and that cells silenced for ARD1 maintained hypoxic nuclear localization of HIF-1alpha. In addition, we show that the ARD1 mRNA and protein levels are not regulated by hypoxia in several human tumor cell lines, including cervical adenocarcinoma HeLa cells, fibrosarcoma HT1080 cells, adenovirus-transformed human kidney HEK293 cells, and human breast cancer MCF-7 cells. Using two model systems ((a) wild-type and HIF-1alpha-null mouse embryo fibroblasts and (b) HeLa cells silenced for HIF-1alpha or -2alpha by RNA interference), we demonstrate that the level of expression of the ARD1 protein is independent of HIF-1alpha and -2alpha. We also demonstrate that ARD1 is a stable, predominantly cytoplasmic protein expressed in a broad range of tissues, tumor cell lines, and endothelial cells. Taken together, our findings demonstrate that ARD1 has limited, if any, impact on the HIF signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M504482200DOI Listing

Publication Analysis

Top Keywords

hif-1alpha -2alpha
12
arrest-defective-1 protein
8
hypoxia-inducible factor
8
cells
8
cells silenced
8
tumor cell
8
cell lines
8
hela cells
8
demonstrate ard1
8
ard1
7

Similar Publications

Background: Fishes are susceptible to hypoxia stress, while the common carp is known for its high tolerance to hypoxia. The hypoxia-inducible factor (HIF) pathway directly regulates the cell's response to hypoxia. Still, it is currently unknown which members of the hif-α genes are present in common carp and their specific functions.

View Article and Find Full Text PDF

Hypoxia-Inducible Factor-2α Promotes Liver Fibrosis by Inducing Hepatocellular Death.

Int J Mol Sci

December 2024

Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.

The activation of hypoxia-inducible factors (HIF)-1α and 2α in the liver is closely linked to the progression of fatty liver diseases. Prior studies indicated that disrupting hepatocyte HIF-2α attenuates diet-induced hepatic steatosis, subsequently decreasing fibrosis. However, the direct role of hepatocyte HIF-2α in liver fibrosis has not been addressed.

View Article and Find Full Text PDF

Purpose: assays are essential for studying cellular biology, but traditional monolayer cultures fail to replicate the complex three-dimensional (3D) interactions of cells in living organisms. 3D culture systems offer a more accurate reflection of the cellular microenvironment. However, 3D cultures require robust and unique methods of characterization.

View Article and Find Full Text PDF

Death-associated protein kinase 1 prevents hypoxia-induced metabolic shift and pulmonary arterial smooth muscle cell proliferation in PAH.

Cell Signal

November 2024

Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany. Electronic address:

Pulmonary hypertension (PH) is a general term used to describe high blood pressure in the lungs from any cause. Pulmonary arterial hypertension (PAH) is a progressive, and fatal disease that causes the walls of the pulmonary arteries to tighten and stiffen. One of the major characteristics of PAH is the hyperproliferation and resistance to apoptosis of vascular cells, which trigger excessive pulmonary vascular remodeling and vasoconstriction.

View Article and Find Full Text PDF

The neglected burden of chronic hypoxia on the resistance of glioblastoma multiforme to first-line therapies.

BMC Biol

November 2024

Institut de Cancérologie Strasbourg Europe (ICANS), Radiobiology Laboratory, 3 Rue de La Porte de L'Hôpital, Strasbourg, 67000, France.

Article Synopsis
  • * Factors like tumor heterogeneity, genomic instability, angiogenesis, and chronic hypoxia contribute to this recurrence by making GBM more resistant to therapies.
  • * The review will explore how chronic hypoxia leads to genetic and epigenetic changes that aid GBM survival and will also propose personalized treatment strategies using a proteomics-based hypoxia signature.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!