AI Article Synopsis

  • Huntington's disease (HD) leads to significant neuronal loss, primarily affecting the neostriatum, and is linked to mitochondrial dysfunction and oxidative stress.
  • The study investigated the levels of glutathione, a key antioxidant, and related enzymes in both the cortex and striatum of an HD mouse model (R6/2) compared to normal controls.
  • Findings showed no significant difference in overall cellular glutathione levels, but a notable increase in mitochondrial glutathione levels in R6/2 mice indicates a potential protective response against oxidative stress.

Article Abstract

Huntington's disease (HD) is a progressive neurodegenerative disease characterized by a severe neuronal loss that occurs primarily in the neostriatum. It has been postulated that mitochondria dysfunction and oxidative stress may play significant roles in the etiology of the disease. Indeed, markers of oxidative stress damage have been detected in the brains of HD patients and in mouse models of HD. In this study, we evaluate the changes in the levels of the potent, endogenous antioxidant glutathione and enzymes involved in its metabolism or recycling in the cortex and striatum of an extensively studied HD mouse model (R6/2). In both cortex and striatum, the levels of cellular glutathione were not significantly different in the R6/2 mice when compared with littermate wild type controls. Remarkably, the levels of glutathione were significantly increased in mitochondria isolated from the cortex and striatum of R6/2 mice when compared with wild type control mice. This specific increase in the levels of glutathione in mitochondria suggests that a compensatory mechanism is induced in the R6/2 mice to protect against an increase in oxidative stress in mitochondria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2005.05.065DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
cortex striatum
12
r6/2 mice
12
huntington's disease
8
mouse model
8
mice compared
8
wild type
8
levels glutathione
8
levels
5
mitochondria
5

Similar Publications

Objective: To investigate the effects of lycopene supplementation on inflammation, lung histopathology and systemic DNA damage in an experimentally induced lung injury model, ventilated by conventional mechanical ventilation and high-frequency oscillatory ventilation, compared with a control group.

Methods: Fifty-five rabbits sampled by convenience were supplemented with 10mg/kg lycopene for 21 days prior to the experiment. Lung injury was induced by tracheal infusion of warm saline.

View Article and Find Full Text PDF

Biofilm, complex structures formed by microorganisms within an extracellular polymeric matrix, pose significant challenges in the sector by harboring dangerous pathogens and complicating decontamination, thereby increasing the risk of foodborne illnesses. This article provides a comprehensive review of the sigma factor, 's role in biofilm development, specifically in gram-negative bacteria, and how the genetic, environmental, and regulatory elements influence activity with its critical role in bacterial stress responses. Our findings reveal that is a pivotal regulator of biofilm formation, enhancing bacterial survival in adverse conditions.

View Article and Find Full Text PDF

We aimed to explore the role of ikarugamycin (IKA) in breast cancer, its connection with hexokinase-2 (HK-2) repression, and tissue factor (TF). This study sought to extend the role of HK-2 as a TF activator in a comprehensive analysis of these interactions from the enzyme, gene, and protein levels. The investigation was performed with MDA-MB-231 and MCF-7 breast cancer lines.

View Article and Find Full Text PDF

Background: Acute systemic inflammation affects many organs and it occurs in a wide range of conditions such as acute lung injury (ALI). Inflammation-triggered oxidative pathways together with the caspase activation seen in ALI, result in apoptosis. Dapagliflozin (DPG) is an agent that is known to have oxidative stress-reducing and anti-inflammatory effects in many tissues.

View Article and Find Full Text PDF

Purpose: Urinary cytokine changes may serve as biomarkers to assess treatment outcomes for interstitial cystitis/bladder pain syndrome (IC/BPS). This study analyzed the changes in urinary cytokines following various bladder therapies and explored their clinical significance in therapeutic mechanisms.

Methods: A total of 122 patients with IC/BPS treated with platelet-rich plasma (PRP), botulinum toxin-A (BoTN-A), hyaluronic acid (HA), or low-energy shock wave (LESW) were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!