We investigated the behavior and characteristics of metal leaching from municipal solid waste incineration (MSWI) fly ash among pure cultures of a sulfur-oxidizing bacterium (SOB) and an iron-oxidizing bacterium (IOB) and a mixed culture. The IOB has a high metal-leaching ability, though its tolerability against the ash addition is low. The SOB might better tolerate an increase in ash addition than the IOB, though metal leaching ability of the SOB is limited. Mixed culture could compensate for these deficiencies, and high metal leachability was exhibited in the 1% ash culture, i.e., 67% and 78% of leachabilities for Cu and Zn, respectively, and 100% for Cr and Cd. Furthermore, comparably high leachabilities such as 42% and 78% for Cu and Zn were observed even in the 3% ash cultures. Characterization of metal leaching by the mixed culture revealed that the acidic and oxidizing condition had remained stable thorough the experimental period. Ferric iron remained in the mixed culture, and the metal leaching was enhanced by redox mechanisms coupling with the leaching by sulfate. An increase of ferrous iron enhanced the Cr, Cu, and As leaching. The optimum concentration of sulfur existed for As and Cr (5 gl(-1)) and Cu (2 gl(-1)). The presence of the degradable and non-degradable organic compound that must be existed in the natural environment or waste landfills made no significant change in the leachability of metals other than Zn. These results suggested that bioleaching using a mixed culture of SOB and IOB is a promising technology for recovering the valuable metals from MSWI fly ash.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2004.12.060 | DOI Listing |
Viruses
November 2024
Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy.
The mechanisms of the innate immunity control of equine infectious anemia virus in horses are not yet widely described. Equine monocytes isolated from the peripheral blood of three Equine infectious anemia (EIA) seronegative horses were differentiated in vitro into macrophages that gave rise to mixed cell populations morphologically referable to M1 and M2 phenotypes. The addition of two equine recombinant cytokines and two EIA virus reference strains, Miami and Wyoming, induced a more specific cell differentiation, and as for other species, IFNγ and IL4 stimulation polarized horse macrophages respectively towards the M1 and the M2 phenotypes.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Plant Biotechnology Laboratory, Instrumental Analysis Laboratory, Plant Biochemistry Laboratory, National Technological Institute of Mexico, Tlajomulco de Zuñiga 45640, Mexico.
Green mold caused by is a major post-harvest disease in citrus fruits. Therefore, the search for sustainable and low-environmental-impact alternatives for the management of these fungi is of utmost importance. L.
View Article and Find Full Text PDFToxics
December 2024
Postgraduate Program in Biotechnology and Biosciences, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina-Campus Reitor João David Ferreira Lima, Florianópolis 88040-900, SC, Brazil.
Bioremediation, involving the strategic use of microorganisms, has proven to be a cost-effective alternative for restoring areas impacted by persistent contaminants such as polycyclic aromatic hydrocarbons (PAHs). In this context, the aim of this study was to explore hydrocarbon-degrading microbial consortia by prospecting native species from soils contaminated with blends of diesel and biodiesel (20% biodiesel/80% diesel). After enrichment in a minimal medium containing diesel oil as the sole carbon source and based on 16S rRNA, Calmodulin and β-tubulin gene sequencing, seven fungi and 12 bacteria were identified.
View Article and Find Full Text PDFMicroorganisms
December 2024
Beef Cattle Institute, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
Metaphylaxis or treating the entire population of cattle at arrival with an antimicrobial has been studied extensively in the cattle industry; however, little information is available on the impacts of treating only a proportion of the population with antimicrobials at arrival. The study objective was to determine potential associations between the proportion of animals in a pen treated with antimicrobial therapy with pen performance and nasopharyngeal microbiome. Yearling steers (n = 160) were randomly allocated to study pens (n = 40) and pens were systematically randomized to one of two antimicrobial treatments (META: all four head received tulathromycin; MIXED: two of four head randomly selected to receive tulathromycin).
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway.
Salmonid rickettsial septicemia (SRS) is a critical sanitary problem in the Chilean aquaculture industry since it induces the highest mortality rate in salmonids among all infectious diseases. , a facultative intracellular bacterium, is the biological agent of SRS. In Chile, two genogroups of , designated as LF-89 and EM-90, have been identified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!