In mammals, biotin, well known for its role as the cofactor of carboxylases, also controls the expression not only of proteins involved in this function, but also of a large number and variety of other different proteins. As a first step towards looking for a rationale for these phenomena, we intend to compare these regulatory functions of biotin between the rat and the much less evolutionized eukaryote, Saccharomyces cerevisiae. Thus far, we have measured growth in yeast cultured on different concentrations of biotin to choose the experimental conditions to be used (2, 200 and 2000 microM) and have found that a band corresponding to the biotinylated S. cerevisiae Arc1p protein appears at streptavidin Western blots at a biotin concentration above 2000 muM, its density increasing with higher biotin amounts. We will now study changes in yeast transcriptome with these varying concentrations and compare them with changes observed in the rat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jnutbio.2005.03.023 | DOI Listing |
Sci Rep
December 2024
Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, 80-307, Poland.
This study presents characterisation of diatom's PtLPCAT1 (acyl-CoA: lysophosphatidylcholine acyltransferase) activity in phospholipid remodelling. In this research microsomal fractions of yeast Δale1 mutant overexpressing PtLPCAT1 were used as a source of the tested enzyme. In the assays evaluating remodelling of different phospholipids by PtLPCAT1 not modified microsomal fractions of the tested yeast were used.
View Article and Find Full Text PDFIn Saccharomyces cerevisiae cells, the bulk of mitochondrial DNA (mtDNA) replication is mediated by the replicative high-fidelity DNA polymerase γ. However, upon UV irradiation low-fidelity translesion polymerases: Polη, Polζ and Rev1, participate in an error-free replicative bypass of UV-induced lesions in mtDNA. We analysed how translesion polymerases could function in mitochondria.
View Article and Find Full Text PDFFEMS Microbiol Lett
December 2024
Department of Biophysics, Yeditepe University School of Medicine, Yeditepe University, Istanbul, Turkey.
Chronological lifespan (CLS) in budding yeast Saccharomyces cerevisiae, which is defined as the time nondividing cells in saturation remain viable, has been utilized as a model to study post-mitotic aging in mammalian cells. CLS is closely related to entry into and maintenance of a quiescent state. Many rearrangements that direct the quiescent state enhance the ability of cells to endure several types of stress.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
Yeast two-hybrid library screening enables the discovery of novel protein-protein interactions. Identifying cytosolic host proteins targeted by host-translocated Phytophthora effector proteins relies on the mRNA amount, quality, and composition used to prepare the yeast two-hybrid cDNA library. Here we describe the steps required for the preparation of a Pinus radiata cDNA library optimized for Phytophthora effector target screening in yeast.
View Article and Find Full Text PDFFolia Microbiol (Praha)
December 2024
Federal Research Center "Pushchino Scientific Center for Biological Research", Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russian Federation.
Cells of the methylotrophic yeast Ogataea parapolymorpha have two genes encoding low-affinity phosphate transporters: PHO87, encoding the plasma membrane transporter, and PHO91, encoding a protein, which is homologous to the Saccharomyces cerevisiae vacuolar membrane transporter. Earlier, we reported that inactivation of PHO91 in O. parapolymorpha interferes with methanol utilization due to the lack of activity of methanol oxidase encoded by the MOX gene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!