Anti-cancer potential of sesquiterpene lactones: bioactivity and molecular mechanisms.

Curr Med Chem Anticancer Agents

Department of Community, Occupational and Family Medicine, Faculty of Medicine, National University of Singapore, Republic of Singapore.

Published: May 2005

AI Article Synopsis

Article Abstract

Sesquiterpene lactones (SLs) are the active constituents of a variety of medicinal plants used in traditional medicine for the treatment of inflammatory diseases. In recent years, the anti-cancer property of various SLs has attracted a great deal of interest and extensive research work has been carried out to characterize the anti-cancer activity, the molecular mechanisms, and the potential chemopreventive and chemotherapeutic application of SLs. In this review, we attempt to summarize the current knowledge of the anti-cancer properties of SLs by focusing on the following important issues. First, we discuss the structure-activity relationship of SLs. All SLs contain a common functional structure, an alpha-methylene-gamma-lactone group, and this important chemical characteristic means that the thiol-reactivity of SLs is an underlying mechanism responsible for their bioactivities. Second, we assess the experimental evidence for the anti-cancer function of SLs obtained from both in vitro cell culture and in vivo animal models. Various SLs have been demonstrated to execute their anti-cancer capability via inhibition of inflammatory responses, prevention of metastasis and induction of apoptosis. Thirdly, we outline the molecular mechanisms involved in the anti-cancer activity of SLs, in particular, the SL-thiols reaction, the effect of SLs on cell signaling pathways such as nuclear transcription factor-kappaB (NF-kappaB) and mitogen-activated protein kinases (MAPK). Finally, we recapitulate some important SLs with regards to their anti-cancer activities and their potential in anti-cancer drug development. Taken together, many SLs are emerging as promising anti-cancer agents with potential applications in both cancer chemotherapy and chemoprevention.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1568011053765976DOI Listing

Publication Analysis

Top Keywords

sls
13
molecular mechanisms
12
anti-cancer
10
sesquiterpene lactones
8
anti-cancer activity
8
anti-cancer potential
4
potential sesquiterpene
4
lactones bioactivity
4
bioactivity molecular
4
mechanisms sesquiterpene
4

Similar Publications

Objectives: The aim of this systematic review and network meta-analysis was to compare the flexural strength of provisional fixed dental prostheses (PFDPs) fabricated using different 3D printing technologies, including digital light processing (DLP), stereolithography (SLA), liquid crystal display (LCD), selective laser sintering (SLS), Digital Light Synthesis (DLS), and fused deposition modeling (FDM).

Materials And Methods: A comprehensive literature search was conducted in databases including PubMed, Web of Science, Scopus, and Open Grey up to September 2024. Studies evaluating the flexural strength of PFDPs fabricated by 3D printing systems were included.

View Article and Find Full Text PDF

Purpose: Optimal treatment strategies for patients with hepatocellular carcinoma (HCC) with oligoprogression after first-line systemic therapy (FLST) remain undefined. We aimed to determine if maintaining [i.e.

View Article and Find Full Text PDF

Evolution of interorganismal strigolactone biosynthesis in seed plants.

Science

January 2025

Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, CA, USA.

Strigolactones (SLs) are methylbutenolide molecules derived from β-carotene through an intermediate carlactonoic acid (CLA). Canonical SLs act as signals to microbes and plants, whereas noncanonical SLs are primarily plant hormones. The cytochrome P450 CYP722C catalyzes a critical step, converting CLA to canonical SLs in most angiosperms.

View Article and Find Full Text PDF

CDK2 activity crosstalk on the ERK kinase translocation reporter can be resolved computationally.

Cell Syst

January 2025

Department of Biochemistry & BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA. Electronic address:

The mitogen-activated protein kinase (MAPK) pathway integrates growth factor signaling through extracellular signal-regulated kinase (ERK) to control cell proliferation. To study ERK dynamics, many researchers use an ERK activity kinase translocation reporter (KTR). Our study reveals that this ERK KTR also partially senses cyclin-dependent kinase 2 (CDK2) activity, making it appear as if ERK activity rises as cells progress through the cell cycle.

View Article and Find Full Text PDF

Ni-induced selective precipitation of His-tagged recombinant proteins shortens purification time while maintaining high yield.

J Biotechnol

January 2025

Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo 183-8538, Japan. Electronic address:

Nickel-NTA affinity chromatography is the current standard method for purifying Histagged recombinant proteins. However, this process involves repetitive tasks, can be time-consuming, and reduces protein yield. Here, we present a simple, fast, and handy method for purifying His-tagged proteins using free Ni²⁺.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!