Detection of viable Mycobacterium avium subsp. paratuberculosis using luciferase reporter systems.

Foodborne Pathog Dis

Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, New York 14853, USA.

Published: August 2005

Plasmid- and phage-based firefly luciferase reporter constructs were evaluated as rapid detection systems for viable Mycobacterium avium subsp. paratuberculosis (MAP). A MAP strain bearing a luciferase-encoding plasmid was detectable at 100 cells/mL in skim milk and 1000 cells/mL in whole milk. Three luciferase-encoding mycobacteriophage were evaluated for detection of wild-type MAP. The best of these, phAE85, allowed detection of >1000 cells/mL within 24-48 h. Membrane filtration did not improve the sensitivity of detection for either plasmid or phage reporters. Luciferase reporters show promise for rapid detection of viable MAP.

Download full-text PDF

Source
http://dx.doi.org/10.1089/fpd.2004.1.258DOI Listing

Publication Analysis

Top Keywords

detection viable
8
viable mycobacterium
8
mycobacterium avium
8
avium subsp
8
subsp paratuberculosis
8
luciferase reporter
8
rapid detection
8
detection
6
paratuberculosis luciferase
4
reporter systems
4

Similar Publications

Objectives: Liver transplant (LT) is an effective treatment for hepatocellular carcinoma (HCC) in appropriately selected patients. Locoregional therapy (LRT) is often performed to extend a patient's eligibility for LT. Imaging has a modest sensitivity of approximately 40-77% for detecting pathologically viable HCC in post-LRT patients.

View Article and Find Full Text PDF

Japanese encephalitis (JE) is a zoonotic disease caused by the Japanese encephalitis virus (JEV), belonging to the family. Diagnosis of Japanese encephalitis (JE) based on clinical signs alone is challenging due to the high proportion of subclinical cases. The Plaque Reduction Neutralization Test (PRNT) is considered the gold standard for detecting JE-specific antibodies because of its high specificity.

View Article and Find Full Text PDF

Spectrum sensing is recognized as a viable strategy to alleviate the scarcity of spectrum resources and to optimize their usage. In this paper, considering the time-varying characteristics and the dependence on various timescales within a time series of samples composed of in-phase (I) and quadrature (Q) component signals, we propose a multi-scale time-correlated perceptual attention model named MSTC-PANet. The model consists of multiple parallel temporal correlation perceptual attention (TCPA) modules, enabling us to extract features at different timescales and identify dependencies among features across various timescales.

View Article and Find Full Text PDF

Oral candidiasis is one of the most common infections in the immunocompromised. Biofilms of species can make treatments difficult, leading to oral infection recurrence. This research aimed to isolate a with anti- effects from the oral cavity.

View Article and Find Full Text PDF

Phenotypic Profiling of Selected Cellulolytic Strains to Develop a Crop Residue-Decomposing Bacterial Consortium.

Microorganisms

January 2025

Microbiology Laboratory, Lithuanian Research Centre for Agriculture and Forestry, Institute of Agriculture, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania.

Slow decomposition rates of cereal crop residues can lead to agronomic challenges, such as nutrient immobilization, delayed soil warming, and increased pest pressures. In this regard, microbial inoculation with efficient strains offers a viable and eco-friendly solution to accelerating the decomposition process of crop residues. However, this solution often focuses mostly on selecting microorganisms based on the appropriate enzymic capabilities and neglects the metabolic versatility required to utilize both structural and non-structural components of residues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!