Rabies is a successful zoonotic disease that has persisted over time, achieving worldwide distribution in a variety of species. Annually, in developing countries with limited access to high-quality antirabies biologics, approximately 50,000 individuals and millions of animals die of rabies. Many of these countries continue to use vaccines produced in sheep, goat or suckling mouse brain, with ultraviolet light or phenol inactivation of the virus. Although there are several efficacious rabies vaccines derived from cultured cells, such as the human diploid cell vaccine, they are costly to produce and prohibitively expensive for developing countries. DNA vaccines offer a new and powerful approach for the generation of needed vaccines. They are stable, inexpensive to produce, easy to construct and induce a full spectrum of long-lasting humoral and cellular immune responses. This review concerns the present state of rabies DNA vaccines, and addresses the technology that may enhance their therapeutic efficacy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1517/13543784.8.2.115 | DOI Listing |
J Biomed Sci
January 2025
National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 35053, Taiwan.
Nucleic acid vaccines have emerged as crucial advancements in vaccine technology, particularly highlighted by the global response to the COVID-19 pandemic. The widespread administration of mRNA vaccines against COVID-19 to billions globally marks a significant milestone. Furthermore, the approval of an mRNA vaccine for Respiratory Syncytial Virus (RSV) this year underscores the versatility of this technology.
View Article and Find Full Text PDFActa Biomater
January 2025
Hainan Cancer Center and Tumor Institute, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China. Electronic address:
In situ vaccine (ISV) can activate the anti-tumor immune system by inducing immunogenic cell death (ICD) at the tumor site. However, the development of tumor ISV still faces challenges due to insufficient tumor antigens released by tumor cells and the existence of tumor immunosuppressive microenvironment (TIME). Targeting the STING pathway has been reported to enhance the adjuvant effects of in situ tumor vaccines by initiating innate immunity.
View Article and Find Full Text PDFJ Infect Dev Ctries
December 2024
Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia.
Introduction: Alkhumra hemorrhagic fever virus (AHFV) is a newly discovered virus in the Flaviviridae family. It was discovered in 1995 among animal handlers in Saudi Arabia. AHFV spreads through close contact with infected animals and tick bites.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China.
(Mp), a unique pathogen devoid of a cell wall, is naturally impervious to penicillin antibiotics. This bacterium is the causative agent of pneumonia, an acute pulmonary affliction marked by interstitial lung damage. Non-macrolide medications may have potential adverse effects on the developmental trajectory of children, thereby establishing macrolides as the preferred treatment for in pediatric patients.
View Article and Find Full Text PDFMalays J Med Sci
December 2024
Faculty of Applied Sciences, AIMST University, Kedah, Malaysia.
DNA vaccines are third-generation vaccines composed of plasmids that encode vaccine antigens. Their advantages include fast development, safety, stability, and cost effectiveness, which make them an attractive vaccine platform for genetic and infectious diseases. However, the low transfection efficiency of DNA vaccines results in poor performance in both larger animals and humans, thereby limiting their clinical use.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!