Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Many antimicrobial drugs have become less effective at combating infectious diseases, and experts in the field are concerned about the possibility of a 'post-antibiotic era' for some clinically important pathogens, particularly staphylococci. In our hospitals, nosocomial infections due to vancomycin-resistant enterococci have emerged, and there are concerns that the same resistance pattern may evolve in methicillin-resistant Staphylococcus aureus (MRSA). Examples from three main areas addressed to prevent this scenario are discussed: (i) screening of isolated biochemical targets and intact bacteria using high-throughput screening technologies, (ii) modifying existing compound classes like quinolones and glycopeptides to create more powerful compounds overcoming pathogen resistance and (iii) introduction of completely new classes of antibiotics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1517/13543784.7.8.1245 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!