AI Article Synopsis

Article Abstract

The production of broiler chickens has become one of the largest sectors in U.S. agriculture, and the growing demand for poultry has led to an annual production growth rate of 5%. With increased demand for poultry, litter management has become a major challenge in the agriculture industry. Although the catalytic steam gasification has been accepted as a possible and feasible method for litter management, concern has been expressed about the presence of nitrogen and phosphorus containing species in the fuel gas and/or in the final solid residue. The possible release of phosphorus as phosphine gas in the fuel gas can have an adverse impact on the environment. Similarly, possible release of ammonia from the nitrogen containing species is also not acceptable. Hence, under partial U.S. Department of Agriculture support, a study was conducted to examine the fate and the environmental impact of the nitrogen- and phosphorus-containing species released during catalytic steam gasification of poultry litter. From various preliminary tests, it was concluded that most (approximately 100%) of the phosphorus would remain in the residue, and some (20-70%) of the nitrogen would end up as ammonia in the fuel gas. The effects of temperature, catalyst loading, and type of catalyst on ammonia liberation were studied in a muffled furnace setup at atmospheric pressure. The fraction of nitrogen released as ammonia was found to decrease with an increase in temperature during pyrolysis and steam gasification. It also decreased with an increase in catalyst loading.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10473289.2005.10464653DOI Listing

Publication Analysis

Top Keywords

steam gasification
16
catalytic steam
12
poultry litter
12
fuel gas
12
gasification poultry
8
demand poultry
8
litter management
8
catalyst loading
8
investigation nitrogen-bearing
4
species
4

Similar Publications

Co-gasification of blast furnace dust with petcoke for sustainable waste management.

Waste Manag

December 2024

Department of Mineral Processing, CSIR-IMMT, Bhubaneswar, Odisha 751013, India. Electronic address:

This study employed a lab-scale fluidized bed steam gasification setup to perform the co-gasification experiments with blast furnace dust (BFD) and petcoke (PC) - wastes from the steel and refining industries, respectively. Multiple experiments were conducted at the optimized conditions to decipher the effects of the mineralogical content of the feed samples on the gasification performance parameters. With the addition of iron and zinc-abundant BFD sample to PC, an effective enhancement in the ability of the gasifier to produce hydrogen-rich synthesis gas was observed, attributed to an increase in surface active sites for gasification reactivity.

View Article and Find Full Text PDF

Utilization of renewable resources has become imperative, and considerable efforts have been devoted to tackling diverse global sustainability challenges, which contribute to the circular economy. The focus of this work was to optimize the extraction of polyphenolic compounds in bark using microwave-assisted (MAE) and ultrasonically assisted (UAE) extractions and evaluate the biological efficacies of the extracts. Additionally, the residue of the extracted pine bark was subjected to steam gasification to produce hydrogen-rich syngas and activated carbon.

View Article and Find Full Text PDF

To comprehensively explore syngas cocombustion technology, gasification experiments in a bench-scale circulating fluidized bed (CFB) and three-dimensional (3D) numerical simulations of a coal-fired boiler furnace have been conducted. In the amplification experiment of biomass gasification, sawdust has been gasified using air, oxygen-enriched air, and steam. The highest heating value of the syngas products reaches 12.

View Article and Find Full Text PDF

Combustion versus Gasification in Power- and Biomass-to-X Processes: An Exergetic Analysis.

ACS Omega

December 2024

Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium.

Residual biomass is a promising carbon feedstock for the production of electricity-based organic chemicals and fuels since, unlike carbon dioxide captured from point sources or air, it also has a valuable energy input. Biomass can be converted into an intermediate stream suitable for Power-to-X processes mainly via combustion or gasification. Such combined processes are generally called biohybrid or Power- and Biomass-to-X processes.

View Article and Find Full Text PDF

As urbanization accelerates, the substantial increase in municipal solid waste (MSW) presents significant challenges for effectively managing and converting this waste into renewable energy. This paper explores an innovative system that integrates chemical looping gasification (CLG) and solid oxide fuel cell (SOFC) technologies to achieve efficient power generation. The SOFC system operates at 3 bar and 900 °C, with a power generation capacity of 9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!