One-hour average ambient concentrations of particulate matter (PM) with an aerodynamic diameter < 2.5 microm (PM2.5) were determined in Steubenville, OH, between June 2000 and May 2002 with a tapered element oscillating microbalance (TEOM). Hourly average gaseous copollutant [carbon monoxide (CO), sulfur dioxide (SO2), nitrogen oxide (NOx), and ozone (O3)] concentrations and meteorological conditions also were measured. Although 75% of the 14,682 hourly PM2.5 concentrations measured during this period were < or = 17 microg/m3, concentrations > 65 microg/m3 were observed 76 times. On average, PM2.5 concentrations at Steubenville exhibited a diurnal pattern of higher early morning concentrations and lower afternoon concentrations, similar to the diurnal profiles of CO and NO(x). This pattern was highly variable; however, PM2.5 concentrations > 65 microg/m3 were never observed during the mid-afternoon between 1:00 p.m. and 5:00 p.m. EST. Twenty-two episodes centered on one or more of these elevated concentrations were identified. Five episodes occurred during the months June through August; the maximum PM2.5 concentration during these episodes was 76.6 microg/m3. Episodes occurring during climatologically cooler months often featured higher peak concentrations (five had maximum concentrations between 95.0 and 139.6 microg/m3), and many exhibited strong covariation between PM2.5 and CO, NO(x), or SO2. Case studies suggested that nocturnal surface-based temperature inversions were influential in driving high nighttime concentrations of these species during several cool season episodes, which typically had dramatically lower afternoon concentrations. These findings provide insights that may be useful in the development of PM2.5 reduction strategies for Steubenville, and suggest that studies assessing possible health effects of PM2.5 should carefully consider exposure issues related to the intraday timing of PM2.5 episodes, as well as the potential for toxicological interactions among PM2.5, and primary gaseous pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10473289.2005.10464646DOI Listing

Publication Analysis

Top Keywords

pm25 concentrations
16
concentrations
14
pm25
11
air monitoring
8
concentrations microg/m3
8
microg/m3 observed
8
lower afternoon
8
afternoon concentrations
8
episodes
6
microg/m3
5

Similar Publications

Long-term exposure to PM pollution increases the risk of cardiovascular diseases, particularly ischemic heart disease (IHD). Current assessments of the health effects related to PM exposure are limited by sparse ground monitoring stations and applicable disease research cohorts, making accurate health effect evaluations challenging. Using satellite-observed aerosol optical depth (AOD) data and the XGBoost-PM25 model, we obtained 1 km scale PM exposure levels across China.

View Article and Find Full Text PDF

Although total carbon (TC) is an important component of fine particulate matter (PM: particulate matter with aerodynamic diameter of <2.5 μm); its sources remain partially unidentified, especially in coastal urban areas. With ongoing development of the global economy and maritime activities, ship-generated TC emissions in port areas cannot be neglected.

View Article and Find Full Text PDF

Bacteria and fungi are abundant and ubiquitous in bioaerosols in hospital environments. Understanding the distribution and diversity of microbial communities within bioaerosols is critical for mitigating their detrimental effects. Our knowledge on the composition of bacteria or fungi in bioaerosols is limited, especially the potential pathogens present in fine particulate matter (PM) from specialized hospitals.

View Article and Find Full Text PDF

Background: In recent decades, there has been a growing interest within the scientific community regarding the study of the fraction that could be released in simulated biological fluids to estimate in vitro bioaccessibility and bioavailability of compounds. Concerning particulate matter (PM), studies were essentially focused on metal (oid)s probably due to more complex methodologies needed for organic compounds, requiring extraction and pre-concentration steps from simulated fluids, followed by chromatographic analysis. Thus, the development of a simple and sensitive methodology for the analysis of multi-class organic compounds released in different inhalation simulated fluids would represent a great contribution to the field.

View Article and Find Full Text PDF

The impact of elevated temperature at the reproductive stage of a crop is one of the critical limitations that influence crop growth and productivity globally. This study was aimed to reveal how sowing time and changing field temperature influence on the regulation of oxidative stress indicators, antioxidant enzymes activity, soluble sugars (SS), and amino acids (AA) in Indian Mustard. The current study was carried out during the 2017-2018 and 2018-2019 where, five varieties of mustard .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!