Proasthmatic effects and mechanisms of action of the dust mite allergen, Der p 1, in airway smooth muscle.

J Allergy Clin Immunol

Division of Pulmonary Medicine, Joseph Stokes Jr Research Institute, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.

Published: July 2005

Background: House dust mite allergen exposure is a key risk factor for the development of allergic asthma. Beyond provoking immune cell-mediated allergic responses, house dust mite allergens were recently shown to exert direct effects on airway structural cells secondary to their intrinsic protease activities.

Objective: This study tested the hypothesis that house dust mite allergen exposure can produce changes in airway responsiveness through a direct effect on airway smooth muscle (ASM).

Methods: Isolated rabbit ASM tissues were exposed to the house dust mite allergen, Der p 1, and induced changes in ASM responsiveness and activation of mitogen-activated protein kinase (MAPK) signaling pathways were examined under different experimental conditions.

Results: The observations demonstrated the following: (1) Der p 1 exposure elicited enhanced constrictor responses and impaired relaxation responses in the ASM tissues, (2) these proasthmatic-like effects of Der p 1 were attributed to its intrinsic cysteine protease activity, and (3) the induced changes in ASM responsiveness were associated with activation of both the extracellular signal-regulated kinase (ERK) 1/2 and the p38 MAPK signaling pathways. Additionally, specific blockade of ERK1/2 signaling was found to prevent the Der p 1-induced changes in ASM responsiveness, whereas inhibition of p38 MAPK signaling enhanced the proasthmatic-like action of Der p 1, with the latter effect a result of augmented activation of ERK1/2.

Conclusion: These findings are the first to demonstrate that the dust mite allergen, Der p 1, can directly elicit changes in ASM responsiveness that are associated with activation of MAPK signaling, wherein proasthmatic effects induced by Der p 1 are attributed to activation of ERK1/2, whereas coactivation of p38 MAPK exerts a homeostatic action by negatively regulating ERK1/2 signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaci.2005.03.046DOI Listing

Publication Analysis

Top Keywords

dust mite
24
mite allergen
20
house dust
16
changes asm
16
asm responsiveness
16
mapk signaling
16
allergen der
12
p38 mapk
12
proasthmatic effects
8
der
8

Similar Publications

[Clinical efficacy of sublingual immunotherapy for allergic rhinitis].

Nihon Yakurigaku Zasshi

January 2025

Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University.

The prevalence of allergic rhinitis (AR) reached 49.2% in 2019. In particular, the prevalence of Japanese cedar (JC) pollinosis is 38.

View Article and Find Full Text PDF

In the overall Japanese population, the prevalence of perennial allergic rhinitis (AR) increased from 18.7% to 24.5% from 1998 to 2019.

View Article and Find Full Text PDF

Asthma affects approximately 300 million individuals worldwide and the onset predominantly arises in childhood. Children are exposed to multiple environmental irritants, such as viruses and allergens, that are common triggers for asthma onset, whilst their immune systems are developing in early life. Understanding the impact of allergen exposures on the developing immune system and resulting alterations in lung function in early life will help prevent the onset and progression of allergic asthma in children.

View Article and Find Full Text PDF

Accumulating evidence has shown that long-term exposure to particulate matter with aerodynamic diameter of less than 2.5 μm (PM2.5) causes Th1/Th2 imbalance and increases the risk of allergic asthma (AA) in children.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!