Purpose: This study examines the proportions of regenerative and collateral sprouting to the skin after peripheral nerve injury.
Methods: In the first experimental paradigm, primary afferent neurones were pre-labelled with Diamidino Yellow (DY), injected in digit 3, followed by sciatic nerve section and repair. After three months of regeneration, digit 3 was re-injected with Fast Blue (FB) to label regenerating cells. Fluoro-Gold (FG) was applied to the femoral (FEM) and musculocutaneous (MC) nerves four days later to quantify their contribution to the innervation. In the second experimental paradigm, sciatic nerve was first sectioned and repaired. Three months later, the sciatic was resected, and digit 3 injected with FB. After four more days, FEM and MC were resected and FG injected in all digits.
Results: Neurones in dorsal root ganglion (DRG) L5 had a higher rate of correct reinnervation of digit 3 (44-72%) than neurones in DRG L4 (14-44%). Like in control cases, only occasional axons were traced from the FEM and MC. In the second experiment, only occasional labelled neurones appeared.
Conclusions: The results indicate differences in the capacity for correct peripheral sensory reinnervation between segmental levels, and that in this model collateral sprouting was practically non-existent compared to regenerative sprouting.
Download full-text PDF |
Source |
---|
Mol Metab
December 2024
Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada; Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada. Electronic address:
Objective: Antagonism of the muscarinic acetylcholine type 1 receptor (MR) promotes sensory axon repair and is protective in peripheral neuropathy, however, the mechanism remains elusive. We investigated the role of the heat-sensing transient receptor potential melastatin-3 (TRPM3) cation channel in MR antagonism-mediated nerve regeneration and explored the potential of TRPM3 activation to facilitate axonal plasticity.
Methods: Dorsal root ganglion (DRG) neurons from adult control or diabetic rats were cultured and treated with TRPM3 agonists (CIM0216, pregnenolone sulfate) and MR antagonists pirenzepine (PZ) or muscarinic toxin 7 (MT7).
J Transl Med
November 2024
Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University of Córdoba, Avda Menéndez Pidal s/n, 14004, Córdoba, Spain.
Background: Vasculogenic therapies explored for the treatment of peripheral artery disease (PAD) have encountered minimal success in clinical trials. Addressing this, B55α, an isoform of protein phosphatase 2A (PP2A), emerges as pivotal in vessel remodeling through activation of hypoxia-inducible factor 1α (HIF-1α). This study delves into the pharmacological profile of VCE-004.
View Article and Find Full Text PDFFood Chem X
June 2024
Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
Germinated soybean is one kind of food and a medicine. In the actual process of producing a large amount of naturally germinated soybean, it is difficult to strictly control the germination process conditions. However, sprout length may be more suitable as the terminal judgment indicator for naturally germinated soybean.
View Article and Find Full Text PDFMuscle Nerve
July 2024
IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.
Introduction/aims: MScanFit MUNE (MScanFit) is a novel tool to derive motor unit number estimates (MUNEs) from compound muscle action potential (CMAP) scans. Few studies have explored its utility in 5q spinal muscular atrophy (SMA5q) patients, assessing only the abductor pollicis brevis (APB) muscle. We aimed to assess different distal muscles in pediatric and adult SMA5q patients, further evaluating clinical-electrophysiological correlations.
View Article and Find Full Text PDFJ Neurosci
April 2024
Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205.
Following peripheral nerve injury, denervated tissues can be reinnervated via regeneration of injured neurons or collateral sprouting of neighboring uninjured afferents into denervated territory. While there has been substantial focus on mechanisms underlying regeneration, collateral sprouting has received less attention. Here, we used immunohistochemistry and genetic neuronal labeling to define the subtype specificity of sprouting-mediated reinnervation of plantar hindpaw skin in the mouse spared nerve injury (SNI) model, in which productive regeneration cannot occur.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!