In this paper the radiological impact from the airborne routine discharges of a modern coal-fired power plant at Langerlo (Belgium) is evaluated. Therefore, the natural radioactivity contents of the coal and the fly-ash discharged were measured. With a bi-Gaussian plume model the maximum annual values of the 226Ra concentration in the air (4.5 nBq/m3) and of the total deposition (1.5 mBq/m2) were calculated. The transfer of the radionuclides from air and soil to the biospheric media, exposing man, were modelled and the annual, individual, effective dose to the critical group, after an assumed life span of the power plant of 70 years, was evaluated at 0.05 microSv/y. This is several orders of magnitude lower than the annual doses for most power plants reported in the literature. The flue gas purification system, extended with a denitrification unit and a desulphurisation unit, was found to be the basis for this low impact.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvrad.2005.04.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!