Acetonitrile-induced unfolding of the photosystem II manganese-stabilizing protein studied by electrospray mass spectrometry.

Rapid Commun Mass Spectrom

Shanghai Mass Spectrometry Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.

Published: August 2005

In this paper an acetonitrile-induced unfolding of the manganese-stabilizing protein (MSP) of photosystem II was discovered. More distinct unfolding states of MSP were identified than previously by using mainly electrospray ionization mass spectrometry (ESI-MS), together with fluorescence spectra and far-UV circular dichroism (CD) at pH 2.0, 6.2 or 11.6, and with acetonitrile concentrations from 0 to 50%. At pH 6.2 with acetonitrile concentration changing from 0 to 10%, relatively broad charge-state distributions and poor intensity were observed in ESI-MS, indicating the presence of coexisting conformers. It was concluded that the structure of the MSP protein is unlikely to be a tightly folded form. When the concentration of acetonitrile was 20-40%, simulating the state in the biological membrane, changes in the state of unfolding of MSP were observed to a certain extent using ESI-MS, fluorescence and CD spectroscopy. The charge-state distribution in ESI-MS was found to move toward high states (from 13+ to 27+ to 15+ to 31+) with increasing acetonitrile concentration. At pH 2.0, the MSP structure is rearranged into an unfolded state, and at pH 11.6 the MSP structure is induced to assume another unordered state by deprotonation of appropriate residues. An interesting observation was that a second peak envelope emerged with 20-50% acetonitrile in the medium at pH 11.6.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.2043DOI Listing

Publication Analysis

Top Keywords

acetonitrile-induced unfolding
8
manganese-stabilizing protein
8
mass spectrometry
8
esi-ms fluorescence
8
acetonitrile concentration
8
msp structure
8
msp
6
acetonitrile
5
unfolding photosystem
4
photosystem manganese-stabilizing
4

Similar Publications

In order to increase understanding of the basis of the stability of the native conformational state of porcine pepsin A, a strategy based on induction and monitoring of protein denaturation was developed. Structural perturbation was achieved by adding acetonitrile (MeCN) to the protein-solvent system. MeCN was found to induce non-coincident disruption of the secondary and tertiary structural features of pepsin A.

View Article and Find Full Text PDF

In this paper an acetonitrile-induced unfolding of the manganese-stabilizing protein (MSP) of photosystem II was discovered. More distinct unfolding states of MSP were identified than previously by using mainly electrospray ionization mass spectrometry (ESI-MS), together with fluorescence spectra and far-UV circular dichroism (CD) at pH 2.0, 6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!