Acute metabolic acidosis has been shown to inhibit muscle protein synthesis, although little is known on the effect of acidosis of respiratory origin. The aim of this study was to investigate the effect of acute respiratory acidosis on tissue protein synthesis. Rats (n = 8) were made acidotic by increasing the CO2 content of inspired air to 12% for 1 hour. Similar rats breathing normal air served as controls (n = 8). Muscle and liver protein synthesis rates were then measured with L-[ 2H5 ]phenylalanine (150 micromol per 100 g body weight, 40 mol%). The results show that protein synthesis is severely depressed in skeletal muscle (-44% in gastrocnemius, -39% in plantaris, and -24% in soleus muscles, P < .01) and liver (-20%, P < .001) in acidotic animals. However, because breathing CO2 -enriched air was found to lower body temperature by approximately 2 degrees C, in a second experiment (n = 10), the difference in body temperature between treated and control animals was minimized by gently wrapping rats breathing CO2 -enriched air in porous cloths. This second experiment confirmed that respiratory acidosis depresses protein synthesis in muscle (-22% in gastrocnemius, P < .001; -19% in plantaris, P < .01; and -4% in soleus, P = NS). However, no effect on liver protein synthesis could be detected, suggesting that liver protein synthesis may be sensitive to changes in body temperature but is not affected by acute respiratory acidosis for 1 hour. The results show that respiratory acidosis inhibits protein synthesis in skeletal muscle and indicates that acidosis, whether of metabolic or respiratory origin, may contribute to loss of muscle protein in patients with compromised renal or respiratory function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.metabol.2005.01.026DOI Listing

Publication Analysis

Top Keywords

protein synthesis
36
respiratory acidosis
16
liver protein
12
body temperature
12
synthesis
9
protein
9
acidosis
8
muscle protein
8
respiratory origin
8
acute respiratory
8

Similar Publications

Proliferating animal cells maintain a stable size distribution over generations despite fluctuations in cell growth and division size. Previously, we showed that cell size control involves both cell size checkpoints, which delay cell cycle progression in small cells, and size-dependent regulation of mass accumulation rates (Ginzberg et al., 2018).

View Article and Find Full Text PDF

In this work, coixalkyne A (), a natural polynuclear calcium complex with a novel cross-shaped molecular architecture, was isolated from L. along with the undescribed analogue coixalkyne B (). Their structures were identified by means of NMR spectroscopy, ECD calculations, and single-crystal X-ray diffraction.

View Article and Find Full Text PDF

Intrauterine growth restriction (IUGR) is the second most common obstetric complication after preterm labor. Appropriate trophoblast differentiation and placental structure, growth and function are key for the maintenance of pregnancy and normal fetal growth, development and survival. Extravillous trophoblast cell proliferation, migration and invasion are regulated by molecules produced by the fetomaternal interface, including autocrine factors produced by the trophoblast, such as insulin‑like growth factor (IGF)‑1.

View Article and Find Full Text PDF

Type 2 Diabetes Mellitus (T2DM) is an etiologically diverse metabolic dysfunction that, if untreated, leads to chronic hyperglycemia. Understanding the etiology of T2DM is critical, as it represents one of the most formidable medical challenges of the twenty-first century. Traditionally, insulin resistance has been recognized as the primary risk factor and a well-known consequence of type 2 diabetes.

View Article and Find Full Text PDF

Background: Maternal hypertensive disorders of pregnancy (HDP) was associated with increased risk of congenital hypothyroidism in preterm infants, but its underlying mechanisms remain unclear.

Objective: To investigate the possible mechanisms by which intrauterine exposure to HDP affects thyroid hormone synthesis in preterm infant rats.

Methods: preterm infant rats were obtained by Caesarean section delivery from the L-NAME group and Control groups which was induced by L-NAME and saline, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!