A growing number of brain imaging studies are being undertaken in order to better understand the contributions of multisensory processes to human behavior and perception. Many of these studies are designed on the basis of the physiological findings from single neurons in animal models, which have shown that multisensory neurons have the capacity for integrating their different sensory inputs and give rise to a product that differs significantly from either of the unisensory responses. At certain points these multisensory interactions can be superadditive, resulting in a neural response that exceeds the sum of the unisensory responses. Because of the difficulties inherent in interpreting the results of imaging large neuronal populations, superadditivity has been put forth as a stringent criterion for identifying potential sites of multisensory integration. In the present manuscript we discuss issues related to using the superadditive model in human brain imaging studies, focusing on population responses to multisensory stimuli and the relationship between single neuron measures and functional brain imaging measures. We suggest that the results of brain imaging studies be interpreted with caution in regards to multisensory integration. Future directions for imaging multisensory integration are discussed in light of the ideas presented.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00221-005-2370-2DOI Listing

Publication Analysis

Top Keywords

multisensory integration
16
brain imaging
16
imaging studies
12
multisensory
8
unisensory responses
8
imaging
6
studies
5
superadditivity metric
4
metric characterizing
4
characterizing multisensory
4

Similar Publications

Neural processing of naturalistic audiovisual events in space and time.

Commun Biol

January 2025

Western Institute for Neuroscience, Western University, London, ON, Canada.

Our brain seamlessly integrates distinct sensory information to form a coherent percept. However, when real-world audiovisual events are perceived, the specific brain regions and timings for processing different levels of information remain less investigated. To address that, we curated naturalistic videos and recorded functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) data when participants viewed videos with accompanying sounds.

View Article and Find Full Text PDF

Visual sensors, including 3D light detection and ranging, neuromorphic dynamic vision sensor, and conventional frame cameras, are increasingly integrated into edge-side intelligent machines. However, their data are heterogeneous, causing complexity in system development. Moreover, conventional digital hardware is constrained by von Neumann bottleneck and the physical limit of transistor scaling.

View Article and Find Full Text PDF

Audiovisual information reaches the brain via both sustained and transient input channels, representing signals' intensity over time or changes thereof, respectively. To date, it is unclear to what extent transient and sustained input channels contribute to the combined percept obtained through multisensory integration. Based on the results of two novel psychophysical experiments, here we demonstrate the importance of the transient (instead of the sustained) channel for the integration of audiovisual signals.

View Article and Find Full Text PDF

The inferior colliculus (IC) is an important midbrain station of the auditory pathway, as well as an important hub of multisensory integration. The adult mammalian IC can be subdivided into three nuclei, with distinct cyto- and myeloarchitectonical profiles and distinct calcium binding proteins expression patterns. Despite several studies about its structural and functional development, the knowledge about the human fetal IC is rather limited.

View Article and Find Full Text PDF

Introduction: Virtual reality (VR) holds significant promise for psychiatric research, treatment, and assessment. Its unique ability to elicit immersion and presence is important for effective interventions. Immersion and presence are influenced by matching-the alignment between provided sensory information and user feedback, and self-presentation-the depiction of a user's virtual body or limbs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!