Recently, it has been shown that enzymes of the cyclic adenosine monophosphate (cAMP)-specific phosphodiesterase (PDE) family 4 can be directly phosphorylated by extracellular signal-regulated kinase 2 (ERK2). Phosphorylation of PDE4s by ERK2 is dependent on two docking domains on either side of the target serine that allow specificity and high-fidelity binding of the kinase. The functional consequence of PDE4 phosphorylation by ERK is either an increase or a decrease in PDE activity, depending on whether the PDE4 contains only one of the upstream conserved regions (UCR1) that are typical of PDE4s or both (UCR1 and UCR2). We detail some of the methods that have been crucial in elucidating these important discoveries that represent a novel point of cross talk between the cAMP signaling system and the ERK mitogen-activated protein kinase cascade.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1385/1-59259-839-0:225 | DOI Listing |
Vet Res Forum
December 2024
Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
Leydig cells play a crucial role in male reproductive physiology, and their dysfunction is often associated with male infertility. Hypoxia negatively affects the structure and function of Leydig cells. This study aimed to investigate the impact of melatonin on the c-Jun N-terminal kinase (Jnk), P38, and extra-cellular signal-regulated kinases 1 and 2 (Erk1/2) mitogen-activated protein kinase (MAPK) signaling pathways in TM3 mouse Leydig cells under hypoxia induced by cobalt (II) chloride (CoCl).
View Article and Find Full Text PDFJ Alzheimers Dis
January 2025
Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
Background: Extracellular signal-regulated kinase 1 (ERK1) belongs to mitogen-activated protein kinases, which are essential for memory formation, cognitive function, and synaptic plasticity. During Alzheimer's disease (AD), ERK1 phosphorylates tau at 15 phosphorylation sites, leading to the formation of neurofibrillary tangles. The overactivation of ERK1 in microglia promotes the release of pro-inflammatory cytokines, which results in neuroinflammation.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA. Electronic address:
Kinase translocation reporters (KTRs) are powerful tools for single-cell measurement of time-integrated kinase activity but suffer from restricted dynamic range and limited sensitivity, particularly in neurons. To address these limitations, we developed enhanced KTRs (eKTRs) for protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) by (i) increasing KTR size, which reduces the confounding effect of KTR diffusion through the nuclear pore, and (ii) modulating the strength of the bipartite nuclear localization signal (bNLS) in their kinase sensor domains, to ensures that the relative distribution of the KTR between the nucleus and cytoplasmic is determined by active nuclear import, active nuclear export, and relative activity of their cognate kinase. The resultant sets of ePKA-KTRs and eERK-KTRs display high sensitivity, broad dynamic range, and cell type-specific tuning.
View Article and Find Full Text PDFCommun Biol
January 2025
Laboratory of Intensive Care, Laboratory for Prevention and Translation of Geriatric Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou, China.
Cellular senescence (CS) is recognized as a critical driver of aging and age-related disorders. Recent studies have emphasized the roles of ion channels as key mediators of CS. Nonetheless, the roles and regulatory mechanisms of chloride intracellular channels (CLICs) during CS remain largely unexplored.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
College of Korean Medicine, Gachon University, Seongnam, 13120, South Korea. Electronic address:
Obesity due to excessive body fat accumulation remains a global problem. Patients with obesity have high cortisol levels, and its dysregulation is caused by increased 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) levels. The effects and mechanism of J2H-1702, an 11β-HSD1 inhibitor, on nonalcoholic steatohepatitis (NASH) were explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!