Chronic morphine up-regulates G alpha12 and cytoskeletal proteins in Chinese hamster ovary cells expressing the cloned mu opioid receptor.

J Pharmacol Exp Ther

Clinical Psychopharmacology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224-2735, USA.

Published: October 2005

A growing body of literature indicates that chronic morphine exposure alters the expression and function of cytoskeletal proteins in addition to the well established interactions between mu opioid receptors and G proteins. In the present study, we hypothesized that chronic morphine alters the expression and functional effects of G alpha12, a G protein that regulates downstream cytoskeletal proteins via its control of RhoA. Our results showed that chronic morphine treatment decreased the expression of G alpha i2 (64%) and G alpha i3 (60%), had no effect of G alpha o, and increased G alpha12 (66%) expression in Chinese hamster ovary (CHO) cells expressing the cloned human mu opioid receptors (hMOR-CHO cells) but not in cells expressing a mutant mu opioid receptor that do not develop morphine tolerance and dependence (T394A-CHO cells). Morphine treatment had no significant effect on PAR-1 thrombin receptor-activated G protein activity, as measured by thrombin-stimulated guanosine 5'-O-(3-[35S]thio)triphosphate binding. Chronic morphine treatment significantly enhanced thrombin-stimulated RhoA activity and thrombin-stimulated expression of alpha-actinin, a cytoskeletal anchoring protein, in hMOR-CHO cells. Proteomic analysis of two-dimensional gel spots prepared from hMOR-CHO cells showed that morphine treatment affected the expression of a number of proteins associated with morphological changes. Up-regulation of G alpha12 and alpha-actinin by chronic morphine was also observed in mouse brain. Viewed collectively, these findings indicate, for the first time, that chronic morphine enhances the G alpha12-associated signaling system, which is involved in regulating cellular morphology and growth, supporting other findings that chronic morphine may alter cellular morphology, in addition to cellular function.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.105.089367DOI Listing

Publication Analysis

Top Keywords

chronic morphine
32
morphine treatment
16
cytoskeletal proteins
12
cells expressing
12
hmor-cho cells
12
morphine
10
chronic
8
chinese hamster
8
hamster ovary
8
expressing cloned
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!