Polyhydroxyalkanoates (PHAs) are a group of carbon andenergy storage compounds that are accumulated during suboptimal growth by many bacteria, and intracellularly deposited in the form of inclusion bodies. Accumulation of PHAs is thought to be used by bacteria to increase survival and stress tolerance in changing environments, and in competitive settings where carbon and energy sources may be limited, such as those encountered in the soil and the rhizosphere. Understanding the role that PHAs play as internal storage polymers is of fundamental importance in microbial ecology, and holds great potential for the improvement of bacterial inoculants for plants and soils. This review summarizes the current knowledge on the ecological function of PHAs, and their strategic role as survival factors in microorganisms under varying environmental stress is emphasized. It also explores the phylogeny of the PHA cycle enzymes, PHA synthase, and PHA depolymerase, suggesting that PHA accumulation was earlier acquired and maintained during evolution, thus contributing to microbial survival in the environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10408410590899228 | DOI Listing |
Environ Sci Technol
January 2025
School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States.
Phosphorus recovery through enhanced biological phosphorus removal (EBPR) processes from agricultural wastes holds promise in mitigating the impending global P shortage. However, the complex nutrient forms and the microbial augments, expected to exert a profound impact on crop rhizomicrobiome and thus crop health, remained unexplored. In this study, we investigated the impacts of EBPR biosolids on crops growth and rhizomicrobiome in comparison to chemical fertilizer and Vermont manure compost.
View Article and Find Full Text PDFRice (N Y)
January 2025
State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
Rice is highly sensitive to low temperatures, making cold stress a significant factor limiting its growth, especially during the bud bursting stage. To address this, an RIL population derived from a cross between cold-tolerant and cold-sensitive rice varieties was used to identify nine QTLs linked to cold tolerance under temperatures of 4 ℃, 5 °C, and 6 ℃ using a high-density genetic map. One candidate gene, LOC_Os07g44410, was identified through gene function annotation, haplotype analysis, and qRT-PCR, with two main haplotypes (Hap1 and Hap2) showing distinct phenotypic differences.
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Canterbury Research Centre, The New Zealand Institute for Plant and Food Research Limited, Lincoln, 8152, New Zealand.
The identification of sex pheromones in native New Zealand moths has been limited, largely due to their minimal pest impact on agricultural ecosystems. The kōwhai moth, Uresiphita polygonalis maorialis, a native crambid, is known for its herbivory on Sophora spp. and Lupinus arboreus leaves.
View Article and Find Full Text PDFEnviron Manage
January 2025
Department of Geoecology, Institute of Geosciences and Geography, Martin Luther University, Halle-Wittenberg, Halle (Saale), Germany.
In the face of unabated urban expansion, understanding the intrinsic characteristics of landscape structure is pertinent to preserving ecological diversity and managing the supply of ecosystem services. This study integrates machine-learning-based geospatial and landscape ecological techniques to assess the dynamics of landscape structure in cities of the rainforest (Akure and Owerri) and Guinea savanna (Makurdi and Minna) ecological regions of Nigeria between 1986 and 2022. Supervised classification using the random forest (RF) machine-learning classifier was performed on Landsat images on the Google Earth Engine (GEE) platform, and landscape metrics were calculated with FRAGSTATS to assess landscape composition, configuration, and connectivity.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
January 2025
Shandong Provincial Innovation Center for Dairy Technology, Zibo, P.R. China.
The dairy industry is progressively integrating advanced enzyme technologies to optimize processing efficiency and elevate product quality. Among these technologies, enzyme immobilization has emerged as a pivotal innovation, offering considerable benefits in terms of enzyme reusability, stability, and overall process sustainability. This review paper explores the latest improvements in enzyme immobilization techniques and their industrial applications within milk processing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!