The rheological behavior of micellar cubic phases in C12EO25 systems and related emulsions has been investigated. In the aqueous C12EO25 binary system, the transition from the cubic phase to the micellar solution is associated with a sudden drop in viscosity and with a small enthalpy of transition. The elastic modulus and viscosity of the cubic phases show a maximum with concentration but remain very high within the range of existence of the cubic phase. Several relaxation processes seem to be present in binary cubic phases, and some of them occur in a time scale that can be followed by both rheology and dynamic light scattering measurements. Upon addition of a small amount of oil (decane), the rheological behavior changes remarkably. As the oil fraction increases, the relaxation times also increase and, finally, highly concentrated, gel-like emulsions are obtained. Contrary to conventional concentrated emulsions, the viscosity of cubic-phase-based emulsions is decreased by increasing the fraction of the dispersed phase. The non-Maxwellian rheological behavior at low oil fractions is described according to the model of slipping crystalline planes, modified by using a distribution of bulk relaxation times, and good fitting to the experimental data is obtained.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la0498962 | DOI Listing |
Biomimetics (Basel)
December 2024
Air Traffic Management Institute, Civil Aviation Flight University of China, Deyang 618307, China.
This paper proposes an Improved Spider Wasp Optimizer (ISWO) to address inaccuracies in calculating the population (N) during iterations of the SWO algorithm. By innovating the population iteration formula and integrating the advantages of Differential Evolution and the Crayfish Optimization Algorithm, along with introducing an opposition-based learning strategy, ISWO accelerates convergence. The adaptive parameters trade-off probability (TR) and crossover probability (Cr) are dynamically updated to balance the exploration and exploitation phases.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
A stoichiometric cubic phase of zinc bismuth oxide ZnBiO (ZBO) is introduced as an anode for rechargeable Na-ion batteries. ZBO is synthesized using a coprecipitation method and characterized by various physicochemical techniques. Pristine ZBO shows a high cyclability in an ether-based electrolyte due to the formation of a robust interphase coupled with high Na conductivity.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Department of Physics, Sakarya University, Sakarya, Turkey.
We investigate the comprehensive analysis's structural, electronic, optical, and elastic properties of Cs₂NaScX₆ (X = Cl, Br) double perovskites using density functional theory (DFT) implemented by the WIEN2k code. The results show that both compounds are in cubic phases. The calculated tolerance factors show both are stable compounds.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
TU Berlin University: Technische Universitat Berlin, Fachbereich Keramische Werkstoffe, Hardenbergstr. 40, 10623, Berlin, GERMANY.
Carbon dioxide hydrogenation to methanol is a key chemical reaction to store energy in chemical bonds, using carbon dioxide as an energy sink. Indium oxide is amongst the most promising candidates for replacing the copper and zinc oxide catalyst, which is industrially applied for syngas mixtures but less idoneous for educts with carbon dioxide due to instability reasons. The polymorph of indium oxide and the operating conditions remain to be optimized for optimal and stable performance.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00187 Roma, Italy.
Hydrogen hydrates exhibit a rich phase diagram influenced by both pressure and temperature, with the so-called C_{2} phase emerging prominently above 2.5 GPa. In this phase, hydrogen molecules are densely packed within a cubic icelike lattice and the interaction with the surrounding water molecules profoundly affects their quantum rotational dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!