Chronic valproate does not alter the kinetics of docosahexaenoic acid within brain phospholipids of the unanesthetized rat.

Psychopharmacology (Berl)

Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, 9000 Rockville Pike, Bldg. 1S 128, Bethesda, MD 20892, USA.

Published: October 2005

Rationale: It has been reported that each of three drugs effective in treating bipolar disorder (lithium, carbamazepine, and valproate) decreases the turnover of arachidonic acid (AA, 20:4n-6) in brain phospholipids of the awake rat. It is also known that lithium and carbamazepine do so without decreasing the turnover of docosahexaenoic acid (DHA, 22:6n-3).

Objective: The aim of this study was to see whether valproate also specifically targets the turnover of AA but not of DHA in brain phospholipids.

Methods: Valproate was administered (200 mg kg(-1), i.p.) to rats for 30 days to produce a therapeutically relevant plasma concentration and then determine its effect compared with that of vehicle on incorporation and turnover rates of DHA in brain phospholipids. In unanesthetized rats that had received valproate or vehicle, [1-14C]DHA was infused intravenously, and arterial blood plasma was sampled until the animal was killed at 5 min; and its brain, after being microwaved, was subjected to chemical and radiotracer analysis.

Results: Using equations derived from our fatty acid model, it was found that chronic valproate compared with vehicle did not alter the rate of incorporation or turnover of DHA in brain phospholipids. Valproate-treated animals had higher concentrations of linoleic acid (18:2n-6) in several brain phospholipids, supporting the hypothesis that it alters brain n-6 fatty acid metabolism.

Conclusions: The results, comparable to published findings following chronic administration of lithium and carbamazepine to rats, support the hypothesis that drugs are effective against mania in bipolar disorder act by downregulating incorporation and turnover of AA, but not of DHA, in brain phospholipids.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00213-005-0059-7DOI Listing

Publication Analysis

Top Keywords

brain phospholipids
24
dha brain
16
lithium carbamazepine
12
turnover dha
12
incorporation turnover
12
brain
9
chronic valproate
8
docosahexaenoic acid
8
phospholipids unanesthetized
8
drugs effective
8

Similar Publications

Natural terpenes II. Concentration-dependent profile of effects on dynamic organization of biological and model membranes.

Biochem Biophys Res Commun

December 2024

Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina; CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT). Córdoba, Argentina. Electronic address:

Monoterpenes (MTs), the major constituents of plant essential oils, cover a broad spectrum of biological activities through their interaction with biomembranes. MTs are highly hydrophobic substances with a net electrical dipole, but are not clearly amphipathic. As a result, they aggregate at increasing concentrations in aqueous media, and in membrane environments their behavior changes from dynamics modulators to disruptors.

View Article and Find Full Text PDF

Previously, we reported that α-synuclein (α-syn) clusters synaptic vesicles (SV) Diao et al., 2013, and neutral phospholipid lysophosphatidylcholine (LPC) can mediate this clustering Lai et al., 2023.

View Article and Find Full Text PDF

Epilepsy is a neurological disorder characterized by recurrent, unprovoked seizures. Currently, the associations among skin microbiota, circulating metabolites, and epilepsy are still not well studied. In this study, we applied univariate and two-step Mendelian randomization analysis using single nucleotide polymorphisms as instrumental variables to analyze the possible associations.

View Article and Find Full Text PDF

Focal Cortical Dysplasia (FCD) & Mesial Temporal Lobe Epilepsy-Hippocampal Sclerosis (MTLE-HS) are two common pathologies of drug-resistant focal epilepsy (DRE). Inappropriate localization of the epileptogenic zones (EZs) in FCD is a significant contributing factor to the unsatisfactory surgical results observed in FCD cases. Currently, no molecular or cellular indicators are available which can aid in identifying the epileptogenic zones (EZs) in FCD.

View Article and Find Full Text PDF

Proteomic profiling reveals the significance of lipid metabolism in small cell lung cancer recurrence and metastasis.

J Transl Med

December 2024

Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.

Background: Small cell lung cancer (SCLC) is a lethal and recalcitrant malignancy with early metastases. However, the molecular and cellular mechanisms underlying its aggressive characteristics remain relatively elusive.

Methods: In this study, we conducted a comprehensive proteomic analysis of 90 primary tumors, 15 patient-matched lymph node metastatic tumors, and 15 brain metastatic tumors derived from a cohort of 105 SCLC patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!