Midkine (MK) and the highly related cytokine pleiotrophin (PTN) constitute the PTN/MK developmental gene family. The Mk and Ptn genes are essential for normal development of the catecholamine and renin-angiotensin pathways and the synthesis of different collagens. It is not known whether the Ptn and Mk genes regulate each other or whether PTN and MK are functionally redundant in development. We have now compared the levels of expression of Ptn and Mk in genetically deficient Mk -/- and Ptn -/- mice and found highly significant increases in Ptn gene expression in spinal cord, dorsal root ganglia, eye, heart, aorta, bladder, and urethra, but not in brain, bone marrow, testis, and lung of Mk -/- mice compared with wild type mice; a remarkable approximately 230-fold increase in Ptn expression levels was found in heart of Mk -/- mice and highly significant but lesser increases were found in six other organs. Differences in levels of Mk gene expression in Ptn -/- mice could not be detected in any of the organs tested. The data demonstrate that MK regulates Ptn gene expression with a high degree of organ specificity, suggesting that Ptn gene expression follows Mk gene expression in development, that the increase in Ptn gene expression is compensatory for the absence of MK in Mk -/- mice, that PTN and MK share a high degree of functional redundancy, and that MK may be very important in the development of heart in mouse.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2005.05.160 | DOI Listing |
Egypt J Immunol
January 2025
Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
Multiple sclerosis (MS) is a disease of the central nervous system, characterized by progressive demyelination and inflammation. MS is characterized by immune system attacks on the myelin sheath surrounding nerve fibers. Genome-wide association studies revealed a polymorphism in the signal transducer and activator of transcription 4 (STAT4) gene that increases risk for MS.
View Article and Find Full Text PDFPlant Commun
January 2025
Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51, Uppsala, Sweden. Electronic address:
Plants possess remarkable regenerative abilities to form de novo vasculature after damage and in response to pathogens that invade and withdraw nutrients. To look for common factors that affect vascular formation upon stress, we searched for Arabidopsis thaliana genes differentially expressed upon Agrobacterium infection, nematode infection and plant grafting. One such gene was cell wall related and highly induced by all three stresses and was named ENHANCED XYLEM AND GRAFTING1 (EXG1) since mutations in it promoted ectopic xylem formation in Vascular cell Induction culture System Using Arabidopsis Leaves (VISUAL) and enhanced graft formation.
View Article and Find Full Text PDFJ Dermatol Sci
December 2024
Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan; Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan. Electronic address:
Background: Altered Fli1 expression is associated with various autoimmune diseases, yet its impact on B cells remains unexplored.
Objective: This study investigated the direct effects of Fli1 depletion on B cell populations, focusing on age-associated B cells (ABCs).
Methods: Splenocytes of Fli1 BcKO (Cd19-Cre; Fli1) and Cd19-Cre mice were analyzed flow cytometrically.
Exp Cell Res
January 2025
Cardiovascular Center, College of Medicine, University of Cincinnati, Ohio-45267, United States of America; School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur-613401, Tamil Nadu, India. Electronic address:
Multiple forms of cell death contribute significantly to cardiovascular pathologies, negatively impacting cardiac remodeling and leading to heart failure. While myocardial cell death has been associated with PM induced cardiotoxicity, the temporal dynamics of various cell death forms, such as apoptosis, ferroptosis, necroptosis, and pyroptosis, in relation to inflammatory processes, remain underexplored. This study examines the time-dependent onset and progression of these cell death pathways in the myocardium and their correlation with inflammation in a Wistar rat model.
View Article and Find Full Text PDFCell Signal
January 2025
Department of Breast and Thyroid Surgery, The Qinghai Provincial People's Hospital, Xining 810007, China. Electronic address:
This study utilizes single-cell RNA sequencing data to reveal the transcriptomic characteristics of breast cancer and normal epithelial cells. Nine significant cell populations were identified through stringent quality control and batch effect correction. Further classification of breast cancer epithelial cells based on the PAM50 method and clinical subtypes highlighted significant heterogeneity between triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (NTNBC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!