Hepatocyte transplantation would offer an attractive alternative to liver transplantation in the treatment of inborn errors of liver metabolism. However, a major problem in most transplantation studies to date has been the limited growth of transplanted cells in the recipient organ. We performed a strategy for selective proliferation of transplanted cells by interfering with the proliferative capacity of resident hepatocytes, using the pyrrolizidine alkaloid retrorsine and then transplanting liver cells in conjunction with repeated administration of triiodothyronine, an inducer of hepatocyte proliferation in rats. In the present study, foetal and adult syngeneic hepatocyte transplantation into spleen was performed in retrorsine-treated hyperbilirubinemic Gunn rats. In parallel, repeated injections of triiodothyronine were given to recipients. Rats were sacrificed at 1, 7, 30 and 90 days after transplantation and blood and bile samples were taken to assess the functionality of transplanted cells. The proliferative activity of transplanted hepatocytes was evaluated using proliferating cell nuclear antigen labelling index. In summary, both adult and foetal hepatocyte transplantation were effective in correcting a metabolic abnormality in Gunn rats for as long as 3 months. The RS/T3 model, as a measure to increase graft function, could represent an important advance to future clinical application of hepatocyte transplantation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6496659PMC
http://dx.doi.org/10.1111/j.1365-2184.2005.00338.xDOI Listing

Publication Analysis

Top Keywords

hepatocyte transplantation
16
gunn rats
12
transplanted cells
12
transplanted hepatocytes
8
transplantation
7
rats
5
transplanted
5
hepatocyte
5
hepatic proliferation
4
proliferation gunn
4

Similar Publications

In vivo selection of hepatocytes.

Hepatology

October 2024

Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, USA.

The liver is a highly regenerative organ capable of significant proliferation and remodeling during homeostasis and injury responses. Experiments of nature in rare genetic diseases have illustrated that healthy hepatocytes may have a selective advantage, outcompete diseased cells, and result in extensive liver replacement. This observation has given rise to the concept of therapeutic liver repopulation by providing an engineered selective advantage to a subpopulation of beneficial hepatocytes.

View Article and Find Full Text PDF

The C3/C3aR pathway exacerbates acetaminophen-induced mouse liver injury via upregulating podoplanin on the macrophage.

FASEB J

January 2025

Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China.

Acute liver failure (ALF) is a life-threatening condition that occurs when the liver sustains severe damage and rapidly loses its function. The primary cause of ALF is the overdose of acetaminophen (APAP), and its treatment is relatively limited. The involvement of the complement system in the development of ALF has been implicated.

View Article and Find Full Text PDF

Liver tissue engineering offers potential in liver transplantation, while the development of hydrogels for scalable scaffolds incorporating natural components and effective functionalities is ongoing. Here, we propose a novel microfluidic 3D printing hydrogel derived from decellularized fish liver extracellular matrix for liver regeneration. By decellularizing fish liver and combining it with gelatin methacryloyl, the hydrogel scaffold retains essential endogenous growth factors such as collagen and glycosaminoglycans.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatohepatitis (MASH), formerly known as nonalcoholic steatohepatitis (MASH), is a major risk factor for cirrhosis and hepatocellular carcinoma (HCC) and a leading cause of liver transplantation. MASH is caused by an accumulation of toxic fat molecules in the hepatocyte which leads to inflammation and fibrosis. Inadequate human "MASH in a dish" models have limited our advances in understanding MASH pathogenesis and in drug discovery.

View Article and Find Full Text PDF

Introduction: Ex vivo preconditioning increases the therapeutic potential of mesenchymal stem cells (MSCs) in terms of antioxidant activity, growth factor production, homing, differentiation, and immunomodulation. Therefore, it is considered an effective strategy to be used before transplantation and therapeutic application of MSCs. Histone deacetylase inhibitor (HDACi), valproic acid (VPA), has been reported to induce hepatic differentiation in MSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!