Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recently, synthetic multifunctional pores have been identified as "universal" detectors of chemical reactions. In this report, we show that with the assistance of enzymes as variable co-sensors, synthetic multifunctional pores can serve as similar universal sensors of variable components in mixed analytes. Sugar sensing in soft drinks is used to exemplify this new concept. This is achieved using invertase and hexokinase as co-sensors and a new synthetic multifunctional pore capable of discriminating between ATP and ADP in an "on-off" manner as sensor. The on-off discrimination between ATP as good and ADP as poor pore blocker is shown to be reasonably tolerant of changing experimental conditions. These results identify universal sensing with synthetic multifunctional pores as a robust, sensitive, and noninvasive method with appreciable promise for practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja052134o | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!