AI Article Synopsis

  • High-throughput macromolecular crystallography has seen advancements in phasing methods, notably through single-wavelength anomalous scattering (SAS) using chromium X-ray radiation, allowing successful protein structure determination with weak scatterers like sulfur.
  • Combining selenomethionine-derivatized proteins with chromium radiation enhances the phasing process due to selenium's stronger scattering capability.
  • The study successfully determined the crystal structure of a chorismate mutase from Clostridium thermocellum using this method, achieving quick structure solution and refinement, suggesting it could become a standard for in-house crystallography.

Article Abstract

Recently, the demands of high-throughput macromolecular crystallography have driven continuous improvements in phasing methods, data-collection protocols and many other technologies. Single-wavelength anomalous scattering (SAS) phasing with chromium X-ray radiation opens a new possibility for phasing a protein with data collected in-house and has led to several successful examples of de novo structure solution using only weak anomalous scatterers such as sulfur. To further reduce data-collection time and make SAS phasing more robust, it is natural to combine selenomethionine-derivatized protein (SeMet protein) with Cr Kalpha radiation to take advantage of the larger anomalous scattering signal from selenium (f'' = 2.28 e(-)) compared with sulfur (f'' = 1.14 e(-)). As reported herein, the crystal structure of a putative chorismate mutase from Clostridium thermocellum was determined using Se-SAS with Cr Kalpha radiation. Each protein molecule contains eight selenomethionine residues in 148 amino-acid residues, providing a calculated Bijvoet ratio of about 3.5% at the Cr Kalpha wavelength. A single data set to 2.2 A resolution with approximately ninefold redundancy was collected using an imaging-plate detector coupled with a Cr source. Structure solution, refinement and deposition to the Protein Data Bank were performed within 9 h of the availability of the scaled diffraction data. The procedure used here is applicable to many other proteins and promises to become a routine pathway for in-house high-throughput crystallography.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S0907444905010644DOI Listing

Publication Analysis

Top Keywords

phasing chromium
8
anomalous scattering
8
sas phasing
8
protein data
8
structure solution
8
kalpha radiation
8
phasing
5
protein
5
edge in-house
4
in-house se-sas
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!