We demonstrate the role of p53-mediated caspase-2 activation in the mitochondrial release of apoptosis-inducing factor (AIF) in cisplatin-treated renal tubular epithelial cells. Gene silencing of AIF with its small interfering RNA (siRNA) suppressed cisplatin-induced AIF expression and provided a marked protection against cell death. Subcellular fractionation and immunofluorescence studies revealed cisplatin-induced translocation of AIF from the mitochondria to the nuclei. Pancaspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone or p53 inhibitor pifithrin-alpha markedly prevented mitochondrial release of AIF, suggesting that caspases and p53 are involved in this release. Caspase-2 and -3 that were predominantly activated in response to cisplatin provided a unique model to study the role of these caspases in AIF release. Cisplatin-treated caspase-3 (+/+) and caspase-3 (-/-) cells exhibited similar AIF translocation to the nuclei, suggesting that caspase-3 does not affect AIF translocation, and thus, caspase-2 may be involved in the translocation. Caspase-2 inhibitor benzyloxycarbonyl-Val-Asp-Val-Ala-Asp-fluoromethylketone or down-regulation of caspase-2 by its siRNA significantly prevented translocation of AIF. Caspase-2 activation was a critical response from p53, which was markedly induced and phosphorylated in cisplatin-treated cells. Overexpression of p53 not only resulted in caspase-2 activation but also mitochondrial release of AIF. The p53 inhibitor pifithrin-alpha or p53 siRNA prevented both cisplatin-induced caspase-2 activation and mitochondrial release of AIF. Caspase-2 activation was dependent on the p53-responsive gene, PIDD, a death domain-containing protein that was induced by cisplatin in a p53-dependent manner. These results suggest that caspase-2 activation mediated by p53 is an important pathway involved in the mitochondrial release of AIF in response to cisplatin injury.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M503305200DOI Listing

Publication Analysis

Top Keywords

caspase-2 activation
28
mitochondrial release
24
activation mitochondrial
16
release aif
16
aif
12
caspase-2
10
release
8
release apoptosis-inducing
8
apoptosis-inducing factor
8
renal tubular
8

Similar Publications

Most tumors initially respond to treatment, yet refractory clones subsequently develop owing to resistance mechanisms associated with cancer cell plasticity and heterogeneity. We used a chemical biology approach to identify protein targets in cancer cells exhibiting diverse driver mutations and representing models of tumor lineage plasticity and therapy resistance. An unbiased screen of a drug library was performed against cancer cells followed by synthesis of chemical analogs of the most effective drug.

View Article and Find Full Text PDF

Arsenic is a widespread environmental carcinogen, and its carcinogenic mechanism has been the focus of toxicology. N-methyladenosine (mA) binding protein YTH domain family protein 2 (YTHDF2) performs various biological functions by degrading mA-modified mRNAs. However, the mA-modified target mRNA of YTHDF2 in regulating arsenic carcinogenesis remains largely unknown.

View Article and Find Full Text PDF

The objective of this research was to investigate how dietary antimicrobial peptides (AMP), namely, Isalo scorpion cytotoxic peptide (IsCT), affect the gill physical barrier function and immune function of grass carp challenged with (). Five hundred forty grass carp were randomly allocated to six groups and fed to varying levels of IsCT in the diet (0, 0.6, 1.

View Article and Find Full Text PDF

Caspase-2 is a unique and conserved cysteine protease that is involved in several cellular processes, including different forms of cell death, maintenance of genomic stability, and the response to reactive oxygen species. Despite advances in caspase-2 research in recent years, the mechanisms underlying its activation remain largely unclear. Although caspase-2 is activated in the PIDDosome complex, its processing could occur even in the absence of PIDD1 and/or RAIDD, suggesting the existence of an alternative platform for caspase-2 activation.

View Article and Find Full Text PDF

The Impact of Acute Ammonia Nitrogen Stress on Serum Biochemical Indicators and Spleen Gene Expression in Juvenile Yellowfin Tuna ().

Animals (Basel)

October 2024

Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China.

The presence of ammonia nitrogen in water has a significant impact on the serum and spleen of fish, potentially leading to changes in substances such as proteins in the serum while also causing damage to the immune function of the spleen. To investigate the effects of ammonia nitrogen (NH-N) stress on juvenile yellowfin tuna (), this study established three NH-N concentrations, 0, 5, and 10 mg/L, denoted as L0, L1, and L2, respectively. Serum and spleen samples were collected at 6, 24, and 36 h.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!