Development of a S. cerevisiae whole cell biocatalyst for in vitro sialylation of oligosaccharides.

J Biotechnol

Fundamental and Applied Molecular Biology, Department for Molecular Biomedical Research, Ghent University and VIB, FSVM-Research Building, Technologiepark 927, B-9052 Gent-Zwijnaarde, Belgium.

Published: October 2005

Absence of sialylation on recombinant glycoproteins compromises their efficacy as therapeutic agents, as it results in rapid clearance from the human bloodstream. To circumvent this, several strategies are followed, including the implementation of a post-secretion glycosylation step. In this paper we describe the engineering of yeast cells expressing active surface exposed Trypanosoma cruzi trans-sialidase (TS) fused to the yeast Aga2 protein, and the use of this yeast in the sialylation of synthetic oligosaccharides. In an attempt to improve overall protein accessibility on the yeast surface, we abolished hyperglycosylation on the yeast cell wall proteins. This was achieved by disrupting the OCH1 gene of the TS surface expressing strain, which resulted in increased enzymatic activity. Using a fluorescence-based activity assay and DSA-FACE structural analysis, we obtained almost complete conversion to a fully sialylated acceptor, whereas in the wild type situation this conversion was only partial. Increasing protein accessibility on the yeast surface by modifying the glycosylation content thus proved to be a valuable approach in increasing the cell wall associated activity of an immobilised enzyme, hence resulting in a more effective biocatalyst system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2005.04.010DOI Listing

Publication Analysis

Top Keywords

protein accessibility
8
accessibility yeast
8
yeast surface
8
cell wall
8
yeast
6
development cerevisiae
4
cerevisiae cell
4
cell biocatalyst
4
biocatalyst vitro
4
vitro sialylation
4

Similar Publications

Life on the nanoscale has been made accessible in recent decades by the development of fast and noninvasive techniques. High-speed atomic force microscopy (HS-AFM) is one such technique that shed light on single protein dynamics. Extending HS-AFM to effortlessly incorporate mechanical property mapping while maintaining fast imaging speed allows a look deeper than topography and reveal details of nanoscale mechanisms that govern life.

View Article and Find Full Text PDF

Introduction: Elbow ailments are common, but conventional treatment modalities have shortcomings, offering only interim pain relief rather than targeting the underlying pathophysiology. The last two decades have seen a marked increase in the use of autologous peripheral blood-derived orthobiologics (APBOs), such as platelet-rich plasma (PRP), to manage elbow disorders. Platelet-rich plasma (PRP) is the most widely used APBO, but its efficacy remains debatable.

View Article and Find Full Text PDF

The anaerobic bacterium Clostridium cellulovorans is a promising candidate for the sustainable production of biofuels and platform chemicals due to its cellulolytic properties. However, the genomic engineering of the species is hampered because of its poor genetic accessibility and the lack of genetic tools. To overcome this limitation, a protocol for triparental conjugation was established that enables the reliable transfer of vectors for markerless chromosomal modification into C.

View Article and Find Full Text PDF

Adjuvants are crucial for maintaining specific, protective, and long-lasting immunity. Here, we aimed to evaluate the antigenic and immunogenic activity of a recombinant form of the S1 domain of the Spike protein, associated with biogenic silver nanoparticles (bio-AgNP) and Alhydrogel as an alternative and conventional adjuvant, respectively, for a SARS-CoV-2 subunit vaccine. We produced and evaluated the antigenicity of the recombinant S1 (rS1) protein by testing its recognition by antibodies present in SARS-CoV-2 positive human serum.

View Article and Find Full Text PDF

Unlabelled: During infection, bacterial pathogens rely on secreted virulence factors to manipulate the host cell. However, in gram-positive bacteria, the molecular mechanisms underlying the folding and activity of these virulence factors after membrane translocation are not clear. Here, we solved the protein structures of two secreted parvulin and two secreted cyclophilin-like peptidyl-prolyl isomerase (PPIase) ATP-independent chaperones found in gram-positive streptococcal species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!