We describe a novel system, GRIFFIN (G-protein and Receptor Interaction Feature Finding INstrument), that predicts G-protein coupled receptor (GPCR) and G-protein coupling selectivity based on a support vector machine (SVM) and a hidden Markov model (HMM) with high sensitivity and specificity. Based on our assumption that whole structural segments of ligands, GPCRs and G-proteins are essential to determine GPCR and G-protein coupling, various quantitative features were selected for ligands, GPCRs and G-protein complex structures, and those parameters that are the most effective in selecting G-protein type were used as feature vectors in the SVM. The main part of GRIFFIN includes a hierarchical SVM classifier using the feature vectors, which is useful for Class A GPCRs, the major family. For the opsins and olfactory subfamilies of Class A and other minor families (Classes B, C, frizzled and smoothened), the binding G-protein is predicted with high accuracy using the HMM. Applying this system to known GPCR sequences, each binding G-protein is predicted with high sensitivity and specificity (>85% on average). GRIFFIN (http://griffin.cbrc.jp/) is freely available and allows users to easily execute this reliable prediction of G-proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1160255PMC
http://dx.doi.org/10.1093/nar/gki495DOI Listing

Publication Analysis

Top Keywords

coupling selectivity
8
support vector
8
vector machine
8
hidden markov
8
markov model
8
g-protein
8
gpcr g-protein
8
g-protein coupling
8
high sensitivity
8
sensitivity specificity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!