Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy.

Antimicrob Agents Chemother

Nestlé Research Center, Nestec Ltd., Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland.

Published: July 2005

Fifteen healthy adult volunteers received in their drinking water a lower Escherichia coli phage T4 dose (10(3) PFU/ml), a higher phage dose (10(5) PFU/ml), and placebo. Fecal coliphage was detected in a dose-dependent way in volunteers orally exposed to phage. All volunteers receiving the higher phage dose showed fecal phage 1 day after exposure; this prevalence was only 50% in subjects receiving the lower phage dose. No fecal phage was detectable a week after a 2-day course of oral phage application. Oral phage application did not cause a decrease in total fecal E. coli counts. In addition, no substantial phage T4 replication on the commensal E. coli population was observed. No adverse events related to phage application were reported. Serum transaminase levels remained in the normal range, and neither T4 phage nor T4-specific antibodies were observed in the serum of the subjects at the end of the study. This is, to our knowledge, the first safety test in the recent English literature which has measured the bioavailability of oral phage in humans and is thus a first step to the rational evaluation of phage therapy for diarrheal diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1168693PMC
http://dx.doi.org/10.1128/AAC.49.7.2874-2878.2005DOI Listing

Publication Analysis

Top Keywords

phage
16
phage dose
16
oral phage
12
phage application
12
volunteers receiving
8
escherichia coli
8
coli phage
8
safety test
8
phage therapy
8
higher phage
8

Similar Publications

A historical perspective on the multifunctional outer membrane channel protein TolC in Escherichia coli.

NPJ Antimicrob Resist

January 2025

College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, Canada.

Since its discovery nearly 60 years ago, TolC has been associated with various cellular functions in Escherichia coli, including the efflux of environmental stressors and virulence factors. It also acts as a receptor for specific bacteriophages and the colicin E1 toxin. This review highlights key discoveries over the past six decades and emphasizes the remaining gaps in understanding how TolC contributes to physiological functions in E.

View Article and Find Full Text PDF

High-affinity VNARs targeting human hemoglobin: Screening, stability and binding analysis.

Int J Biol Macromol

January 2025

College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China. Electronic address:

Hemoglobin, composed of α- and β-chains, is essential for oxygen transport and is key in diagnosing and treating gastrointestinal and blood disorders. It also aids in detecting blood contamination and estimating transfusion volumes. Immunological methods, based on antigen-antibody interactions, are distinguished by their high sensitivity and accuracy.

View Article and Find Full Text PDF

Isolation, characterization, and genome sequencing analysis of a novel phage HBW-1 of Salmonella.

Microb Pathog

January 2025

Laboratory of Molecular Microbiology and Food Safety, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China. Electronic address:

Salmonella presents a significant threat to the health of animals and humans, especially with the rise of strains resistant to multiple drugs. This highlights the necessity for creating sustainable and efficient practical approaches to managing salmonellosis. The most recent and safest approach to combat antimicrobial resistance-associated infections is lytic bacteriophages.

View Article and Find Full Text PDF

Bacteriophage infections in bacterial cultures pose a significant challenge to industrial bioprocesses, necessitating the development of innovative antiphage solutions. This study explores the antiphage potential of indigo carmine (IC), a common FDA-approved food additive. IC demonstrated selective inactivation of DNA phages (P001, T4, T1, T7, λ) with the EC values ranging from 0.

View Article and Find Full Text PDF

Interactions between bacteriophages with mammalian immune cells are of great interest and most phages possess at least one molecular pattern (nucleic acid, sugar residue, or protein structure) that is recognizable to the immune system through pathogen associated molecular pattern (PAMP) receptors (i.e., TLRs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!