Due to increased global use, acute exposures to pyrethroid insecticides in humans are of clinical concern. Pyrethroids have a primary mode of action that involves interference with the inactivation of Na+ currents (I(Na)) in excitable cells, which may include cardiac myocytes. To investigate the possible cardiac toxicity of these agents, we have examined the effects of a type-1 pyrethroid, tefluthrin, on isolated rat ventricular myocytes. Under whole-cell current-clamp, tefluthrin prolonged the mean action potential duration at 90% repolarization (APD90) by 216 +/- 34% in 19 myocytes isolated from 14 hearts. About one-third of this prolongation was apparently due to persistent I(Na), with the balance associated with spontaneous cytosolic Ca2+ waves, and Na+-Ca2+ exchange. In some action potentials, tefluthrin also activated early after-depolarizations (EADs). Using a selected EAD-containing action potential clamp, we observed that EADs could evoke a Cd2+-sensitive membrane current (I(EAD)) that triggered secondary sarcoplasmic reticulum (SR) Ca2+ release. The notion that EADs could stimulate Ca2+ current was strengthened by the persistence of I(EAD) in myocytes exposed to extracellular Li+ and Sr2+ ions, used to minimize Na+-Ca2+ exchange and SR Ca2+ release, respectively. Tefluthrin inhibited I(EAD) by approximately 10%. Together, our results support an arrhythmogenic model whereby tefluthrin exposure stimulated Na+ influx, provoking cellular Ca2+ overload by reverse Na+-Ca2+ exchange. During Ca2+ waves, forward Na+-Ca2+ exchange prolonged the action potential markedly and kindled EADs by permitting the reactivation of Ca2+ current. Similar mechanisms may be involved in pyrethroid toxicity in vivo, and also in type 3 long QT syndrome, wherein Na+ channel mutations prolong I(Na).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/jpet.105.084822 | DOI Listing |
JMIR Res Protoc
January 2025
Institute for Health Care Management and Research, University of Duisburg-Essen, Essen, Germany.
Background: Artificial intelligence (AI)-based clinical decision support systems (CDSS) have been developed for several diseases. However, despite the potential to improve the quality of care and thereby positively impact patient-relevant outcomes, the majority of AI-based CDSS have not been adopted in standard care. Possible reasons for this include barriers in the implementation and a nonuser-oriented development approach, resulting in reduced user acceptance.
View Article and Find Full Text PDFJ Leukoc Biol
January 2025
Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA.
Regulated sequential exocytosis of neutrophil granules is essential in orchestrating the innate immune response, while uncontrolled secretion causes inflammation. We developed and characterized Nexinhib20, a small-molecule inhibitor that targets azurophilic granule exocytosis in neutrophils by blocking the interaction between the small GTPase Rab27a and its effector JFC1. Its therapeutic potential has been demonstrated in several pre-clinical models of inflammatory disease.
View Article and Find Full Text PDFScience
January 2025
Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA.
The mechanisms by which the brain replays neural activity sequences remain unknown. Recording from large ensembles of hippocampal place cells in freely behaving rats, we observed that replay content is strictly organized over multiple timescales and governed by self-avoidance. After movement cessation, replays avoided the animal's previous path for 3 seconds.
View Article and Find Full Text PDFChaos
January 2025
Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, Marseille 13005, France.
PLoS One
January 2025
TETIS, Université de Montpellier, AgroParisTech, CIRAD, INRAE, Montpellier, France.
African swine fever (ASF) is a highly contagious disease affecting wild and domestic pigs, characterised by severe haemorrhagic symptoms and high mortality rates. Originally confined to Sub-Saharan Africa, ASF virus genotype II has spread to Europe since 2014, mainly affecting Eastern Europe, and progressing through wild boar migrations and human action. In January 2022, the first case of ASF, due to genotype II, was reported in North-western Italy, in a wild boar carcass.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!