Objectives: A maternal autosomal recessive mutation causing recurrent biparentally inherited complete hydatidiform moles (BiCHM) in affected women was previously mapped to a 12.4-cM interval in 19q13.4, which was recently further narrowed to a smaller 1.1-Mb region at the centromeric end. It is believed that the mutant gene in this condition is a major contributor to the regulation of imprinting in the maternal germline. To confirm and possibly narrow the critical interval we studied additional rare familial and recurrent cases.
Methods: Using polymorphic marker analysis, we first confirmed biparental inheritance on the studied molar tissues. We then performed targeted homozygosity mapping with markers in 19q13.4 on DNA from affected women of a new large consanguineous pedigree, an additional potentially familial case, and three cases with sporadic recurrent CHM. Direct sequencing of coding exons and Southern analysis with a coding-region probe for one candidate gene (NALP5) was also performed.
Results: Biparental inheritance was confirmed for those molar tissues available for analysis. All women, except for one of the isolated cases, were homozygous for markers in the identified 1.1-Mb region in 19q13.4. No mutations or large genomic rearrangements were found in NALP5 (MATER), a gene with oocyte-specific expression. Heterozygosity for a single-nucleotide polymorphism in exon 13 of NALP5 in one patient may refine the candidate region to 1.0 Mb.
Conclusions: The reported candidate region for BiCHM in 19q13.4 was confirmed in additional families, further establishing it as the major locus that harbors a gene mutated in this condition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jsgi.2005.02.011 | DOI Listing |
iScience
January 2025
Medical Research Institute KITANO HOSPITAL, PIIF Tazuke-kofukai, Kita-ku, Osaka 530-8480, Japan.
Activation of thyroid-stimulating hormone receptor (TSHR) fundamentally leads to hyperthyroidism. To elucidate TSHR signaling, we conducted transcriptome analyses for hyperthyroid mice that we generated by overexpressing TSH. TSH overexpression drastically changed their thyroid transcriptome.
View Article and Find Full Text PDFiScience
January 2025
Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, P.R. China.
Avian coccidiosis is a widespread intestinal disease found in poultry that causes substantial economic losses. To extensively investigate the molecular mechanism of drug resistance in , we analyzed the sporozoites and second-generation merozoites of drug-sensitive (DS), diclazuril-resistant (DZR) strain, and salinomycin-resistant (SMR) strains of through transcriptome sequencing. Whole genome sequencing analyses were performed on resistant strains at different concentrations-11 sensitive strains, 16 field diclazuril-resistant strains, and 15 field salinomycin-resistant strains of .
View Article and Find Full Text PDFBioact Mater
April 2025
Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
The aberrant activation of the canonical Wnt/β-catenin signaling has been identified as a significant contributor to the pathogenesis of osteoarthritis (OA), exacerbating OA symptoms and driving OA progression. Despite its potential as a therapeutic target, clinical translation is impeded by the lack of a targeting delivery system and effective drug candidate that can modulate steady-state protein levels of β-catenin at post-translational level. Our study addresses these challenges by offering a new approach for OA treatment.
View Article and Find Full Text PDFRegen Ther
March 2025
Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia.
The Mesenchymal Stem Cell (MSC) is a multipotent progenitor cell with known differentiation potential towards various cell lineage, making it an appealing candidate for regenerative medicine. One major contributing factor to age-related MSC dysfunction is cellular senescence, which is the hallmark of relatively irreversible growth arrest and changes in functional properties. GATA4, a zinc-finger transcription factor, emerges as a critical regulator in MSC biology.
View Article and Find Full Text PDFNeurol Genet
February 2025
Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
Background And Objectives: Neonatal encephalopathy (NE) is characterized by an abnormal level of consciousness with or without seizures in the neonatal period. It affects 1-6/1,000 live term newborns. We applied genome sequencing (GS) in term newborns with NE to investigate the underlying genetic causes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!