Ciguatera is a human food poisoning caused by consumption of tropical and subtropical fish that have, through their diet, accumulated ciguatoxins in their tissues. This study used laboratory mice to investigate the potential to apply blood collection cards to biomonitor ciguatoxin exposure. Quantitation by the neuroblastoma cytotoxicity assay of Caribbean ciguatoxin (C-CTX-1) spiked into mice blood was made with good precision and recovery. The blood collected from mice exposed to a sublethal dose of Caribbean ciguatoxic extract (0.59 ng/g C-CTX-1 equivalents) was analyzed and found to contain detectable toxin levels at least 12 h post-exposure. Calculated concentration varied from 0.25 ng/ml at 30 min post-exposure to 0.12 ng/ml at 12 h. A dose response mice exposure revealed a linear dose-dependent increase of ciguatoxin activity in mice blood, with more polar ciguatoxin congeners contributing to 89% of the total toxicity. Finally, the toxin measurement in mice blood exposed to toxic extracts from the Indian Ocean or from the Pacific Ocean showed that the blood collection card method could be extended to each of the three known ciguatoxin families (C-CTX, I-CTX and P-CTX). The low matrix effect of extracted dried-blood samples (used at 1:10 or 1:20 dilution) and the high sensitivity of the neuroblastoma assay (limit of detection 0.006 ng/ml C-CTX-1), determined that the blood collection card method is suitable to monitor ciguatoxin at sublethal doses in mice and opens the potential to be a useful procedure for fish screening, environmental risk assessment or clinical diagnosis of ciguatera fish poisoning in humans or marine mammals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxicon.2005.03.014 | DOI Listing |
Drug Deliv Transl Res
January 2025
Model System for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany.
Two features of macrophages make them attractive for targeted transport of drugs: they efficiently take up a broad spectrum of nanoparticles (NPs) and, by sensing cytokine gradients, they are attracted to the sites of infection and inflammation. To expand the potential of macrophages as drug carriers, we investigated whether macrophages could be simultaneously coloaded with different types of nanoparticles, thus equipping individual cells with different functionalities. We used superparamagnetic iron oxide NPs (SPIONs), which produce apoptosis-inducing hyperthermia when exposed to an alternating magnetic field (AMF), and co-loaded them on macrophages together with drug-containing NPs (inorganic-organic nanoparticles (IOH-NPs) or mesoporous silica NPs (MSNs)).
View Article and Find Full Text PDFJ Vis Exp
December 2024
Beijing Institute of Brain Disorders, Capital Medical University; Laboratory of Brain Disorders, Ministry of Science and Technology, Capital Medical University; Collaborative Innovation Center for Brain Disorders, Capital Medical University;
Spinal cord gliomas are commonly malignant tumors of the spinal cord, leading to a high rate of disability. However, uniform treatment guidelines and comprehensive data on spinal cord gliomas remain limited due to the lack of suitable preclinical animal models. Developing a simple and reproducible animal model has become essential for advancing basic and translational research.
View Article and Find Full Text PDFBiomol Biomed
January 2025
Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China.
Peripheral artery disease (PAD), primarily caused by atherosclerosis, leads to the narrowing or blockage of arteries that supply blood to the limbs. This study explores the pro-angiogenic effects of L-theanine and its underlying mechanisms in a mouse model of hindlimb ischemia (HLI). To evaluate L-theanine's pro-angiogenic effects, human umbilical vein endothelial cells (HUVECs) were subjected to tube formation, migration, sprouting, and proliferation assays.
View Article and Find Full Text PDFHematology
December 2025
The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, Yunnan Province, People's Republic of China.
To investigate the role of ALKBH3 in acute myeloid leukemia (AML), we constructed an animal model of xenotransplantation of AML. Our study demonstrated that ALKBH3-mediated m1A demethylation inhibits ferroptosis in KG-1 cells by increasing ATF4 expression, thus promoting the development of AML. These findings suggest that reducing ALKBH3 expression may be a potential strategy to mitigate AML progression.
View Article and Find Full Text PDFAm J Cancer Res
December 2024
Department of Pharmacology and Toxicology, Medical College of Wisconsin Milwaukee, Wisconsin 53226, USA.
Cancer cell overexpresses numerus proteins, however, how these up-regulated proteins, especially those enzymatically opposite kinases and phosphatases, act together to promote oncogenesis is unknown. Here, we reported that protein tyrosine phosphatase H1 (PTPH1) is a scaffold protein for receptor tyrosine kinase (HER2) to potentiate breast tumorigenesis. PTPH1 utilizes its PDZ domain to bind HER2, p38γ, PBK, and YAP1 and to increase HER2 nuclear translocation, stemness, and oncogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!