Regulation of the ATP-sensitive K channel Kir6.2 by ATP and PIP(2).

J Mol Cell Cardiol

UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.

Published: July 2005

ATP-sensitive K (K(ATP)) channels are blocked by ATP and activated by PIP(2). Both negatively-charged ligands are presumed to bind to positively-charged residues on the N-and C-termini of the channel's cytoplasmic domain. Evidence summarized here suggests that the channel's interaction with ATP and PIP(2) is regulated by separate groups of residues, involving both direct charge-charge interactions and allosteric effects. ATP interaction is regulated by R50 in the N-terminus and by K185, R192 and R201 in the C-terminus. R192 and R201 mutations decrease channel sensitivity to ATP, ADP and AMP to a similar extent, implying that they regulate interaction with either the alpha phosphate group, common to all three adenine nucleotides, or the adenosine moiety. K185 mutations, and to a lesser extent R50 mutations, decrease ATP and ADP sensitivity without markedly affecting AMP sensitivity, implying that they regulate interaction with the beta phosphate of ATP and ADP. In addition, when open probability decreases due to rundown, ATP sensitivity increases in R50, K185 and R192, but not in R201 mutants. Combining these observations with recent structural data, we hypothesize the following scenario: 1) the ATP binding site is located at the outside of the channel's cytoplasmic domain away from the pore. 2) When the channel is open, R50 and K185 interact directly with the beta phosphate of ATP, whereas R192, which appears to be removed from the ATP binding site, modulates the initial interaction with ATP allosterically. 3) When the channel closes, R201 is in position to interact with the alpha phosphate of ATP to stabilize the closed state. 4) PIP(2) also interacts with the channel's cytoplasmic domain, but at distinct positively-charged residues located above the ATP binding site and near to the plasma membrane. These residues include R54 in the N-terminus and R176, R177 and R206 in the C-terminus. Thus, the binding domains of ATP and PIP(2) in the N- and C-termini do not appear to overlap.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yjmcc.2004.11.018DOI Listing

Publication Analysis

Top Keywords

atp
15
atp pip2
12
channel's cytoplasmic
12
cytoplasmic domain
12
r192 r201
12
atp adp
12
phosphate atp
12
atp binding
12
binding site
12
positively-charged residues
8

Similar Publications

Effect of repeated semen ejaculation on sperm quality and selected biochemical markers of canine semen.

Pol J Vet Sci

June 2024

Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-718 Olsztyn-Kortowo, Poland.

The aim of this study was to evaluate the quality parameters and selected biochemical markers of canine semen sampled at 24-h intervals over a period of 5 days, preceded by 6 months of sexual abstinence. Full ejaculates were obtained from 6 dogs. Ejaculate volume and total sperm counts in the ejaculate decreased gradually on successive sampling days.

View Article and Find Full Text PDF

The Warburg Effect: Is it Always an Enemy?

Front Biosci (Landmark Ed)

November 2024

Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus.

The Warburg effect, also known as 'aerobic' glycolysis, describes the preference of cancer cells to favor glycolysis over oxidative phosphorylation for energy (adenosine triphosphate-ATP) production, despite having high amounts of oxygen and fully active mitochondria, a phenomenon first identified by Otto Warburg. This metabolic pathway is traditionally viewed as a hallmark of cancer, supporting rapid growth and proliferation by supplying energy and biosynthetic precursors. However, emerging research indicates that the Warburg effect is not just a strategy for cancer cells to proliferate at higher rates compared to normal cells; thus, it should not be considered an 'enemy' since it also plays complex roles in normal cellular functions and/or under stress conditions, prompting a reconsideration of its purely detrimental characterization.

View Article and Find Full Text PDF

Nonemissive Iridium(III) Solvent Complex as a Self-Reporting Photosensitizer for Monitoring Phototherapeutic Efficacy in a "Signal on" Mode.

Chem Biomed Imaging

December 2024

Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China.

Photodynamic therapy (PDT) has long been receiving increasing attention for the minimally invasive treatment of cancer. The performance of PDT depends on the photophysical and biological properties of photosensitizers (PSs). The always-on fluorescence signal of conventional PSs makes it difficult to real-time monitor phototherapeutic efficacy in the PDT process.

View Article and Find Full Text PDF

Microglial-mediated neuroinflammation is crucial in the pathophysiological mechanisms of secondary brain injury (SBI) following intracerebral hemorrhage (ICH). Mitochondria are central regulators of inflammation, influencing key pathways such as alternative splicing, and play a critical role in cell differentiation and function. Mitochondrial ATP synthase coupling factor 6 (ATP5J) participates in various pathological processes, such as cell proliferation, migration, and inflammation.

View Article and Find Full Text PDF

The maintenance of intracellular and extracellular adenosine triphosphate (ATP) levels plays a pivotal role in cardiac function. In recent years, burgeoning attention has been directed towards ATP-induced cell death (AICD), revealing it as a distinct cellular demise pathway triggered by heightened extracellular ATP concentrations, distinguishing it from other forms of cell death such as apoptosis and necrosis. AICD is increasingly acknowledged as a critical mechanism mediating the pathogenesis and progression of various cardiovascular maladies, encompassing myocardial ischemia-reperfusion injury, sepsis-induced cardiomyopathy, hypertrophic cardiomyopathy, arrhythmia, and diabetic cardiomyopathy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!