Solvent influence on the photophysical properties of 4-methoxy-N-methyl-1,8-naphthalimide.

Spectrochim Acta A Mol Biomol Spectrosc

Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Dos Bandeirantes 3900, CEP 14040-901, Ribeirão Preto, S.P., Brazil.

Published: January 2006

4-Methoxy-N-methyl-1,8-naphthalimide (1) exhibits considerable solvatochromism and its UV-vis spectral properties have been studied in several polar/non-polar and protic/aprotic solvents, as well as in ethanol-water mixtures. The results reveal a strong influence of the solvent's polarity and its hydrogen-bond donor (HBD) capability on the photophysical properties of 1. For binary ethanol/water mixtures, preferential solvation models describe the band shifts in the probe's visible absorption spectrum well, but they fail to describe the corresponding shifts of the emission maxima. Pseudolinear approximations between solvent composition and molecule's transition energies, E(T), can be used to study the composition of ethanol-water mixtures, simplifying the mathematical treatment for eventual analytical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2005.05.008DOI Listing

Publication Analysis

Top Keywords

photophysical properties
8
ethanol-water mixtures
8
solvent influence
4
influence photophysical
4
properties 4-methoxy-n-methyl-18-naphthalimide
4
4-methoxy-n-methyl-18-naphthalimide 4-methoxy-n-methyl-18-naphthalimide
4
4-methoxy-n-methyl-18-naphthalimide exhibits
4
exhibits considerable
4
considerable solvatochromism
4
solvatochromism uv-vis
4

Similar Publications

Xanthine nucleosides play a significant role in the expansion of the four-letter genetic code. Herein, 7-functionalized 8-aza-7-deazaxanthine ribo- and 2'-deoxyribonucleosides are described. 2-Amino-6-alkoxy nucleosides were converted to halogenated 8-aza-7-deazaxanthine nucleosides by deamination followed by hydroxy/alkoxy substitution.

View Article and Find Full Text PDF

Anisotropic Plasmon Resonance in TiCT MXene Enables Site-Selective Plasmonic Catalysis.

ACS Nano

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China.

The ever-growing interest in MXenes has been driven by their distinct electrical, thermal, mechanical, and optical properties. In this context, further revealing their physicochemical attributes remains the key frontier of MXene materials. Herein, we report the anisotropic localized surface plasmon resonance (LSPR) features in TiCT MXene as well as site-selective photocatalysis enabled by the photophysical anisotropy.

View Article and Find Full Text PDF

Sc-doped GeTe thin films prepared by radio-frequency magnetron sputtering.

Sci Rep

January 2025

Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 532 10, Czech Republic.

Radio frequency magnetron co-sputtering method employing GeTe and Sc targets was exploited for the deposition of Sc doped GeTe thin films. Different characterization techniques (scanning electron microscopy with energy-dispersive X-ray analysis, X-ray diffraction, atomic force microscopy, sheet resistance temperature-dependent measurements, variable angle spectroscopic ellipsometry, and laser ablation time-of-flight mass spectrometry) were used to evaluate the properties of as-deposited (amorphous) and annealed (crystalline) Ge-Te-Sc thin films. Prepared amorphous thin films have GeTe, GeTeSc, GeTeSc, GeTeSc and GeTeSc chemical composition.

View Article and Find Full Text PDF

Ln-MOFs, composed of lanthanide ions and functional organic ligands, are porous materials with tunable structures and unique luminescent properties. However, the interplay between ligand AIE properties and the framework's "antenna effect" on MOF morphology is understudied. Here, Tb-D-Cam-TPTB was synthesized via solvothermal method using TPTB (persulfurated arene) as the primary ligand, D-Cam as the auxiliary ligand, and Tb3+ as the metal ion.

View Article and Find Full Text PDF

Recent advances in the development of enantiopure BODIPYs and some related enantiomeric compounds.

Chem Commun (Camb)

January 2025

Department of Chemistry, Khalifa University, SAN Campus, Abu Dhabi, United Arab Emirates.

Article Synopsis
  • Small chiral organic dyes, especially chiral variants of boron dipyrromethene (BODIPY), are important for developing advanced smart chiroptical luminophores due to their outstanding photophysical properties.
  • Recent research has focused on inducing chirality in achiral BODIPY by creating chiral centers at various positions, enhancing synthetic accessibility.
  • The developments in chiral BODIPY have potential applications in fields such as photodynamic therapy, bio-imaging, optoelectronics, and more.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!