Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The in vivo antibacterial activity of nitric oxide (NO)-releasing xerogel coatings was evaluated against an aggressive subcutaneous Staphylococcus aureus infection in a rat model. The NO-releasing implants were created by coating a medical-grade silicone elastomer with a sol-gel-derived (xerogel) film capable of storing NO. Four of the bare or xerogel-coated silicone materials were subcutaneously implanted into male rats. Ten rats were administered 10 microl of a 10(8) cfuml(-1)S. aureus colony directly into the subcutaneous pocket with the implant prior to wound closure. Infection was quantitatively and qualitatively evaluated after 8d of implantation with microbiological and histological methods, respectively. A 82% reduction in the number of infected implants was achieved with the NO-releasing coating. Histology revealed that the capsule formation around infected bare silicone rubber controls was immunoactive and that a biofilm may have formed. Capsule formation in response to NO-releasing implants had greater vascularity in comparison with uninoculated or untreated controls. These results suggest that NO-releasing coatings may dramatically reduce the incidence of biomaterial-associated infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2005.05.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!