Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper compares the adsorption behavior of 1,4-phenylene diisocyanide (PDI) and terephthalic acid (TA) on Ni, Cu and Pt surfaces. Following competitive adsorption from two-component equimolar solutions of PDI and TA, chemical analysis by XPS confirmed the preferential adsorption of PDI over TA on Ni and Cu. The ability to form "chemically sticky" surfaces on Ni, Cu and Pt surfaces by self-assembly into organized organic thin films (OOTFs) was also investigated. PM-IRRAS analysis revealed a tendency for PDI to bond in a terminal fashion through one isocyanide group, on both Ni and Cu. In contrast, PDI adsorbed in a flat configuration on Pt. Chemically sticky OOTFs have potential for utilization as coupling agents to achieve a high cross-link density and enhance stress transfer between the nanoclusters and the organic matrix molecules in metal-nanocluster-filled polymer matrix nanocomposites. The results of this work indicate that 1,4-phenylene diisocyanide is a suitable choice as a coupling agent for metal nanoclusters of Ni and Cu.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2005.05.044 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!