The creation of specifically matched ligand-receptor pairs that are orthogonal to naturally present interacting pairs is essential for the development of small molecule-regulated gene expression systems for biotechnological applications. However, for many years this task has represented a significant challenge for synthetic chemists and protein engineers. Recently, Doyle and colleagues demonstrated that highly specific ligand-receptor pairs can be engineered in a rapid fashion by creating large libraries of protein variants and applying a selection scheme to identify variants with improved activation by the target synthetic ligand.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tibtech.2005.05.002 | DOI Listing |
Front Immunol
December 2024
Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, ;China.
Background: Hepatocellular carcinoma (HCC) is a highly heterogeneous tumor, and the development of accurate predictive models for prognosis and drug sensitivity remains challenging.
Methods: We integrated laboratory data and public cohorts to conduct a multi-omics analysis of HCC, which included bulk RNA sequencing, proteomic analysis, single-cell RNA sequencing (scRNA-seq), spatial transcriptomics sequencing (ST-seq), and genome sequencing. We constructed a tumor purity (TP) and tumor microenvironment (TME) prognostic risk model.
Gene
December 2024
Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China. Electronic address:
Osteonecrosis of femoral head (ONFH) is characterized not only by ischemic bone tissue necrosis but also by cartilage degeneration, which plays an essential role in the pathogenesis of ONFH. The molecular communication between tissues contributes to disease progression, however the communication between cartilage and subchondral bone in the progression of ONFH remains unclear. In this study, we integrated transcriptomic data from ONFH cartilage and subchondral bone, exploring common differentially expressed genes (DEGs), pathway and function enrichment analyses, the protein-protein interaction (PPI) network, and hub genes to comprehensively study molecular integration.
View Article and Find Full Text PDFACS Synth Biol
December 2024
Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States.
Transmembrane receptors that endow mammalian cells with the ability to sense and respond to biomaterial-bound ligands will prove instrumental in bridging the fields of synthetic biology and biomaterials. Materials formed with thiol-norbornene chemistry are amenable to thiol-peptide patterning, and this study reports the rational design of synthetic receptors that reversibly activate cellular responses based on peptide-ligand recognition. This transmembrane receptor platform, termed Extracellular Peptide-ligand Dimerization Actuator (EPDA), consists of stimulatory or inhibitory receptor pairs that come together upon extracellular peptide dimer binding with corresponding monobody receptors.
View Article and Find Full Text PDFGenomics Inform
December 2024
Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
Cells interact with each other for proper function and homeostasis. Often, co-expression of ligand-receptor pairs from the single-cell RNAseq (scRNAseq) has been used to identify interacting cell types. Recently, RNA sequencing of physically interacting multi-cells has been used to identify interacting cell types without relying on co-expression of ligand-receptor pairs.
View Article and Find Full Text PDFDiabetologia
December 2024
Department of Cardiology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
Aims/hypothesis: Pancreatic beta cell mass is dynamically regulated in response to increased physiological and pathological demands. Understanding the mechanisms that control physiological beta cell proliferation could provide valuable insights into novel therapeutic approaches to diabetes. Here, we aimed to analyse the intracellular and extracellular signalling pathways involved in regulating the physiological proliferation of beta cells using single-cell RNA-seq (scRNA-seq) and in vitro functional assays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!