Three-dimensional simulations of airways within human lungs.

Cell Biochem Biophys

Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC 27709, USA.

Published: October 2005

Information regarding the deposition patterns of inhaled particles has important implications to the fields of medicine and risk assessment. The former concerns the targeted delivery of inhaled pharmacological drugs (aerosol therapy); the latter concerns the risk assessment of inhaled air pollutants (inhalation toxicology). It is well documented in the literature that the behavior and fate of inhaled particles may be formulated using three families of variables: respiratory system morphologies, aerosol characteristics, and ventilatory parameters. It is straightforward to propose that the seminal role is played by morphology per se because the structures of individual airways and their spatial orientations within lungs affect the motion of air and the trajectories of transported particles. In previous efforts, we have developed original algorithms to describe airway networks within lungs and employed them as templates to interpret the results of single photon emission computed tomography (SPECTs) studies. In this work, we have advanced the process of mathematical modeling and computer simulations to produce three-dimensional (3D) images. We have tested the new in silico model by studying two different branching concepts: an inclusive (all airways present) system and a single "typical" pathway system. When viewed with the glasses supplied with this volume, the 3D nature of airway branching networks within lungs as displayed via our original computer graphics software is clear. We submit that the new technology will have numerous and seminal functions in future medical and toxicological regimens, the most fundamental being the creation of a platform to view natural 3D structures in vivo with related biological processes (e.g., disposition of inhaled pharmaceuticals).

Download full-text PDF

Source
http://dx.doi.org/10.1385/CBB:42:3:223DOI Listing

Publication Analysis

Top Keywords

inhaled particles
8
risk assessment
8
networks lungs
8
inhaled
5
three-dimensional simulations
4
simulations airways
4
airways human
4
lungs
4
human lungs
4
lungs deposition
4

Similar Publications

The use of air-jet dry powder inhalers (DPIs) offers a number of advantages for the administration of pharmaceutical aerosols, including the ability to achieve highly efficient and potentially targeted aerosol delivery to the lungs of children using the oral or trans-nasal routes of administration. To better plan targeted lung delivery of pharmaceutical aerosols with these inhalers, more information is needed on the extrathoracic (ET) depositional loss in pediatric subjects when using relatively small (e.g.

View Article and Find Full Text PDF

Introduction: Exposure to particulate matter ≤2.5 μm in diameter (PM) is associated with adverse respiratory outcomes, including alterations to lung morphology and function. These associations were reported even at concentrations lower than the current annual limit of PM.

View Article and Find Full Text PDF

IgA class switching enhances neutralizing potency against SARS-CoV-2 by increased antibody hinge flexibility.

Antiviral Res

January 2025

School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education; Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety. Electronic address:

IgA antibodies are critical components of the mucosal immune barrier, providing essential first-line defense against viral infections. In this study, we investigated the impact of antibody class switching on neutralization efficacy by engineering recombinant antibodies of different isotypes (IgA1, IgG1) with identical variable regions from SARS-CoV-2 convalescent patients. A potent, broad-spectrum neutralizing monoclonal antibody CAV-C65 exhibited a ten-fold increase in neutralization potency upon switching from IgG1 to IgA1 monomer.

View Article and Find Full Text PDF

Pro-inflammatory effects of inhaled Great Salt Lake dust particles.

Part Fibre Toxicol

January 2025

Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, 30 S. 2000 E., Room 201 Skaggs Hall, Salt Lake City, UT, 84112, USA.

Background: Climate change and human activities have caused the drying of marine environments around the world. An example is the Great Salt Lake in Utah, USA which is at a near record low water level. Adverse health effects have been associated with exposure to windblown dust originating from dried lakebed sediments, but mechanistic studies evaluating the health effects of these dusts are limited.

View Article and Find Full Text PDF

Urinary oxidative stress biomarkers in nephrotoxicity induced by PM in a rat model.

Inhal Toxicol

January 2025

Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.

Objective: The present study evaluated urinary oxidative stress (OxS) biomarkers to explain the extrapulmonary effect of renal function decline due to subchronic inhalation exposure to particles smaller than 2.5 μm, as well as the correlation of the biomarkers with the particles' endotoxin content.

Materials And Methods: Adult male Sprague-Dawley rats were exposed to subchronic inhalation of particles smaller than 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!