Sensory peptide neurotransmitters mediating mucosal and distension evoked neural vasodilator reflexes in guinea pig ileum.

Am J Physiol Gastrointest Liver Physiol

Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada K7L 5G2.

Published: November 2005

The aim was to determine the role CGRP and/or tachykinins released from sensory neural mechanisms in enteric neural vasodilator pathways. These pathways project through the myenteric plexus to submucosal vasodilator neurons. Submucosal arterioles were exposed in the distal portion of an in vitro combined submucosal-myenteric guinea pig ileal preparation, and dilation was monitored with videomicroscopy. Vasodilator neural reflexes were activated by gently stroking the mucosa with a fine brush or by distending a balloon placed beneath the flat-sheet preparation in the proximal portion. Dilations evoked by mucosal stroking were inhibited 64% by the CGRP 8-37 and 37% by NK3 (SR 142801) antagonists. When the two antagonists were combined with hexamethonium, only a small vasodilation persisted. Balloon distension-evoked vasodilations were inhibited by NK3 antagonists (66%) but were not altered by CGRP 8-37. In preparations in which myenteric descending interneurons were directly activated by electrical stimulation, combined application of CGRP 8-37 and the NK antagonists had no effect. Stimulation of capsaicin sensitive nerves in the myenteric plexus did not activate these vasodilator reflexes. These findings suggest that mucosal-activated reflexes result from the release of CGRP and tachykinins from enteric sensory neurons. Distension-evoked responses were significantly blocked by NK3 antagonists, suggesting that stretch activation of myenteric sensory neurons release tachykinins that activate NK3 receptors on myenteric vasodilator pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpgi.00027.2005DOI Listing

Publication Analysis

Top Keywords

cgrp 8-37
12
neural vasodilator
8
vasodilator reflexes
8
guinea pig
8
vasodilator pathways
8
myenteric plexus
8
nk3 antagonists
8
sensory neurons
8
vasodilator
6
cgrp
5

Similar Publications

Stimulation of the calcium-sensing receptor (CaSR) regulates vascular contractility, but cellular mechanisms involved remain unclear. This study investigated the role of perivascular sensory nerves in CaSR-induced relaxations of male rat mesenteric arteries. In fluorescence studies, colocalisation between synaptophysin, a synaptic vesicle marker, and the CaSR was present in the adventitial layer of arterial segments.

View Article and Find Full Text PDF

Activation of the BMP2-SMAD1-CGRP pathway in dorsal root ganglia contributes to bone cancer pain in a rat model.

Heliyon

March 2024

Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200030, China.

Peripheral nerve remodeling and sensitization are involved in cancer-related bone pain. As a member of the transforming growth factor-β class, bone morphogenetic protein 2 (BMP2) is recognized to have a role in the development of the neurological and skeletal systems. Our previous work showed that BMP2 is critical for bone cancer pain (BCP) sensitization.

View Article and Find Full Text PDF

Calcitonin gene-related peptide (CGRP) is synthesized and secreted by trigeminal ganglion neurons, and is a key neuropeptide involved in pain and immune regulation. This study investigates the expression of CGRP in the trigeminal ganglion (TG) and its regulatory role in the polarization of macrophages in rats with temporomandibular arthritis. A rat model of temporomandibular arthritis was established using CFA.

View Article and Find Full Text PDF

CGRP-dependent sensitization of PKC-δ positive neurons in central amygdala mediates chronic migraine.

J Headache Pain

December 2022

Interdisciplinary Neuroscience Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan.

Background: To investigate specific brain regions and neural circuits that are responsible for migraine chronification.

Methods: We established a mouse model of chronic migraine with intermittent injections of clinically-relevant dose of nitroglycerin (0.1 mg/kg for 9 days) and validated the model with cephalic and extracephalic mechanical sensitivity, calcitonin gene-related peptide (CGRP) expression in trigeminal ganglion, and responsiveness to sumatriptan or central CGRP blockade.

View Article and Find Full Text PDF

The amygdala has emerged as a key player in the emotional response to pain and pain modulation. The lateral and capsular regions of the central nucleus of the amygdala (CeA) represent the "nociceptive amygdala" due to their high content of neurons that process pain-related information. These CeA divisions are the targets of the spino-parabrachio-amygdaloid pain pathway, which is the predominant source of calcitonin gene-related peptide (CGRP) within the amygdala.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!