A rapid increase in greenhouse gas levels is thought to have fueled global warming at the Paleocene-Eocene Thermal Maximum (PETM). Foraminiferal magnesium/calcium ratios indicate that bottom waters warmed by 4 degrees to 5 degrees C, similar to tropical and subtropical surface ocean waters, implying no amplification of warming in high-latitude regions of deep-water formation under ice-free conditions. Intermediate waters warmed before the carbon isotope excursion, in association with downwelling in the North Pacific and reduced Southern Ocean convection, supporting changing circulation as the trigger for methane hydrate release. A switch to deep convection in the North Pacific at the PETM onset could have amplified and sustained warming.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1109202 | DOI Listing |
Nat Commun
October 2024
Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
AbstractThe influence of climate on deep-time plant-insect interactions is becoming increasingly well known, with temperature, CO increases (and associated stoichiometric changes in plants), and aridity likely playing a critical role. In our modern climate, all three factors are shifting at an unprecedented rate, with uncertain consequences for biodiversity. To investigate effects of temperature, stoichiometry (specifically that of nitrogen), and aridity on insect herbivory, we explored insect herbivory in three modern floral assemblages and in 39 fossil floras, especially focusing on eight floras around a past hyperthermal event (the Paleocene-Eocene Thermal Maximum) from Bighorn Basin (BB).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2024
Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064.
Gene
October 2024
Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China.
The colonization of aquatic to terrestrial habitats by brachyuran crabs requires genetic innovations as well as morphological adaptations to adapt to terrestrial environments. The genetic basis of such adaptive evolution, however, is largely unknown. This study focuses on terrestrialization in Geograpsus (Grapsidae) the only highly terrestrial genus in this family, which represents a notable example of terrestrial adaptive radiation.
View Article and Find Full Text PDFNat Commun
March 2024
EarthByte Group, School of Geosciences, The University of Sydney, Sydney, NSW, 2006, Australia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!