The binuclear copper enzyme tyrosinase activates O2 to form a mu-eta2:eta2-peroxodicopper(II) complex, which oxidizes phenols to catechols. Here, a synthetic mu-eta2:eta2-peroxodicopper(II) complex, with an absorption spectrum similar to that of the enzymatic active oxidant, is reported to rapidly hydroxylate phenolates at -80 degrees C. Upon phenolate addition at extreme temperature in solution (-120 degrees C), a reactive intermediate consistent with a bis-mu-oxodicopper(III)-phenolate complex, with the O-O bond fully cleaved, is observed experimentally. The subsequent hydroxylation step has the hallmarks of an electrophilic aromatic substitution mechanism, similar to tyrosinase. Overall, the evidence for sequential O-O bond cleavage and C-O bond formation in this synthetic complex suggests an alternative intimate mechanism to the concerted or late stage O-O bond scission generally accepted for the phenol hydroxylation reaction performed by tyrosinase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1112081 | DOI Listing |
J Am Chem Soc
January 2025
Department of Physics, Alba Nova Research Center, Stockholm University, Stockholm SE-106 91 Sweden.
Iron-doped nickel oxyhydroxides, Ni(Fe)OH, are among the most promising oxygen evolution reaction (OER) electrocatalysts in alkaline environments. Although iron (Fe) significantly enhances the catalytic activity, there is still no clear consensus on whether Fe directly participates in the reaction or merely acts as a promoter. To elucidate the Fe's role, we performed X-ray spectroscopy studies supported by DFT on Ni(Fe)OH electrocatalysts.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
The sluggish water oxidation reaction (WOR) is considered the kinetic bottleneck of artificial photosynthesis due to the complicated four-electron and four-proton transfer process. Herein, we find that the WOR can be kinetically nearly barrierless on four representative photoanodes (i.e.
View Article and Find Full Text PDFInorg Chem
January 2025
Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
In this study, we apply TD-DFT and DFT calculations to explore the mechanistic details of O evolution in an artificial system that closely resembles Photosystem II (PSII). The reaction involves mononuclear Mn(III) complex [Mn(salpd)(OH)] and -benzoquinone under light-driven conditions. Our calculations reveal that the Schiff-base ligand salpd plays a crucial role in several key steps of the reaction, including the light-mediated oxidation of [Mn(salpd)(OH)] to [Mn(salpd)(OH)] by -benzoquinone, the subsequent oxidation of [Mn(salpd)(OH)] to the key Mn(V) intermediate [Mn(salpd)(O)], and the critical O-O bond formation step.
View Article and Find Full Text PDFPNAS Nexus
January 2025
Thrust of Earth, Ocean and Atmospheric Sciences Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511453, China.
Modulating the electronic structure of noble metals via electronic metal-support interaction (EMSI) has been proven effectively for facilitating molecular oxygen activation and catalytic oxidation reactions. Nevertheless, the investigation of the fundamental mechanisms underlying activity enhancement has primarily focused on metal oxides as supports, especially in the catalytic degradation of volatile organic compounds. In this study, a novel Pt catalyst supported on nitrogen-doped carbon encapsulating FeNi alloy, featuring ultrafine Pt nanoparticles, was synthesized.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Bathinda 151401, India.
The effect of confinement on the tetrahedral ordering of liquid water plays a vital role in controlling their microscopic structure and dynamics as well as their spectroscopic properties. In this article, we have performed the classical molecular dynamics simulations of four different CTAB/water/chloroform reverse micelles with varied water content to study how the tetrahedral ordering of nanoscale water inside reverse micellar confinement influences the microscopic dynamics and the structural relaxation of water···water hydrogen bonds and its impact on the low-frequency intermolecular vibrational bands. We have noticed from the results obtained from simulated trajectories the lowering trends of tetrahedral ordering of water pools in reverse micellar confinements as we move from bulk to confined and strictly confined environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!