Ovulation is caused by a sequence of neuroendocrine events: GnRH and LH surges that are induced by positive feedback action of estrogen secreted by the mature ovarian follicles. The central mechanism of positive feedback action of estrogen on GnRH/LH secretion, however, is not fully understood yet. The present study examined whether metastin, the product of metastasis suppressor gene KiSS-1, is a central neuropeptide regulating GnRH/LH surge and then estrous cyclicity in the female rat. Metastin had a profound stimulation on LH secretion by acting on the preoptic area (POA), where most GnRH neurons projecting to the median eminence are located, because injection of metastin into the third ventricle or POA increased plasma LH concentrations in estrogen-primed ovariectomized rats. Metastin neurons were immunohistochemically found in the arcuate nucleus (ARC) to be colocalized with estrogen receptors with some fibers in the preoptic area (POA) in close apposition with GnRH neuronal cell bodies or fibers. Quantitative RT-PCR has revealed that KiSS-1 and GPR54 mRNAs were expressed in the ARC and POA, respectively. The blockade of local metastin action in the POA with a specific monoclonal antibody to rat metastin completely abolished proestrous LH surge and inhibited estrous cyclicity. Metastin-immunoreactive cell bodies in the ARC showed a marked increase and c-Fos expression in the early proestrus afternoon compared with the day of diestrus. Thus, metastin released in the POA is involved in inducing the preovulatory LH surge and regulating estrous cyclicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2005-0195 | DOI Listing |
Acta Physiol (Oxf)
February 2025
Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
Aim: Exposure to light at night and meal time misaligned with the light/dark (LD) cycle-typical features of daily life in modern 24/7 society-are associated with negative effects on health. To understand the mechanism, we developed a novel protocol of complex chronodisruption (CD) in which we exposed female rats to four weekly cycles consisting of 5-day intervals of constant light and 2-day intervals of food access restricted to the light phase of the 12:12 LD cycle.
Methods: We examined the effects of CD on behavior, estrous cycle, sleep patterns, glucose homeostasis and profiles of clock- and metabolism-related gene expression (using RT qPCR) and liver metabolome and lipidome (using untargeted metabolomic and lipidomic profiling).
Vet Res Commun
January 2025
Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, 183-8509, Fuchu, Tokyo, Japan.
This study investigated, for the first time, the alterations in the uterine echotexture and blood flow in cyclic and acyclic (inactive ovary) goats using ultrasonography. The study aimed also to evaluate the metabolomic changes in the plasma of cyclic and acyclic goats. Furthermore, the histopathological approach was applied to the specimens of the uterus to validate the findings of this study.
View Article and Find Full Text PDFJ Pineal Res
January 2025
Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China.
Circadian rhythm disruption (CRD), stemming from sleep disorders and/or shift work, is a risk factor for reproductive dysfunction. CRD has been reported to disturb nocturnal melatonin signaling, which plays a crucial role in female reproduction as a circadian regulator and an antioxidant. The hypothalamic-pituitary-ovarian (HPO) axis regulates female reproduction, with luteinizing hormone (LH) pulse pattern playing a pivotal role in folliculogenesis and steroidogenesis.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-748, Poland.
Equine endometrosis is a major cause of infertility in mares and is characterized by degenerative, functional and fibrotic changes in the endometrium with increased collagen (COL) deposition. Transforming growth factor (TGF)-β1 is one of the major pro-fibrotic factors involved in the excessive deposition of extracellular matrix (ECM) components in the equine endometrium. It has been demonstrated that ovarian steroids, specifically 17β-estradiol (E2) and progesterone (P4), not only regulate the cyclicity of the estrous cycle, but also have been implicated as anti- or pro-fibrotic factors.
View Article and Find Full Text PDFPol J Vet Sci
September 2024
Department of Clinics, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Namakkal-637 001, India.
The aim of this study was to assess the in vitro penetration rate of antioxidant enriched frozen thawed Kangayam bull semen. For the current investigation, 5-7-year-old Kangayam bulls were used. The semen was collected twice per week and two ejaculates were collected each time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!