Current requirements for control of live viral vaccines, including yellow fever 17D, produced from potentially neurotropic wild-type viruses include tests for neurovirulence in nonhuman primates. We have used yellow fever 17D virus as a live vector for novel flavivirus vaccines (designated ChimeriVax) against dengue, Japanese encephalitis (JE), and West Nile (WN) viruses. For control of these vaccines, it would be preferable to substitute a test in mice for the test in a higher species (monkeys). In this study, we compare the neurovirulence of ChimeriVax vaccine candidates in suckling mice inoculated by the intracerebral (IC) route with graded doses of the test article or yellow fever 17D vaccine as a reference control. Mortality ratio and survival distribution are the outcome measures. The monkey safety test is performed as described for control of yellow fever vaccines. In both mice and monkeys, all chimeric vaccines were significantly less neurovirulent than yellow fever 17D vaccine. The test in suckling mice discriminated between strains of two different vaccines (ChimeriVax-JE and ChimeriVax-DEN1) differing by a single amino acid change, and was more sensitive for detecting virulence differences than the test in monkeys. The results indicate that the suckling mouse test is simple to perform, highly sensitive and, with appropriate validation, could complement or possibly even replace the neurovirulence component of the monkey safety test. The test in infant mice is particularly useful as a means of demonstrating biological consistency across seed virus and vaccine lots.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biologicals.2005.03.009 | DOI Listing |
J Biomed Sci
January 2025
Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico.
Mosquito-borne flaviviruses represent a public health challenge due to the high-rate endemic infections, severe clinical outcomes, and the potential risk of emerging global outbreaks. Flavivirus disease pathogenesis converges on cellular factors from vectors and hosts, and their interactions are still unclear. Exosomes and microparticles are extracellular vesicles released from cells that mediate the intercellular communication necessary for maintaining homeostasis; however, they have been shown to be involved in disease establishment and progression.
View Article and Find Full Text PDFJ Virol
December 2024
1Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Flaviviruses utilize the cellular endoplasmic reticulum (ER) for all aspects of their lifecycle. Genome replication and other viral activities take place in structures called replication organelles (ROs), which are invaginations induced in the ER membrane. Among the required elements for RO formation is the biogenesis of viral nonstructural proteins NS4A and NS4B.
View Article and Find Full Text PDFFront Physiol
December 2024
Institute of Disinfection and Pest Control, Beijing Center for Disease Prevention and Control, Beijing, China.
Background: (Skuse) is an invasive and widespread mosquito species that can transmit dengue, chikungunya, yellow fever, and Zika viruses. Its control heavily relies on the use of insecticides. However, the efficacy of the insecticide-based intervention is threatened by the increasing development of resistance to available insecticides.
View Article and Find Full Text PDFInsect Biochem Mol Biol
December 2024
Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA. Electronic address:
Am J Trop Med Hyg
December 2024
Department of Pathogenic Biology, Basic Medical College, Naval Medical University, Shanghai, China.
Rapidly identifying Anopheles-carrying malaria parasites is crucial for imported malaria prevention. However, suitable methods still lack quick detection in limited-resource situations. In this study, disc microfluidic isothermal amplification integrating loop-mediated isothermal amplification (LAMP) and microfluidic chip technology were applied to develop rapid and precise detection with low resource requirements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!