Alginate-poly-L-lysine-alginate (APA) microcapsules are currently being investigated as a means to immuno-isolate transplanted cells, but their biocompatibility is limited. In this study, we verified the hypothesis that poly-L-lysine (PLL), which is immunogenic when unbound, is exposed at the APA microcapsule surface. To do so, we analysed the microcapsule membrane at the micrometric/nanometric scale using attenuated total reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry. The results indicate that PLL and alginate molecules interact within the membrane. PLL exists in considerable amounts near the surface, contributing to the majority of the carbon within the outermost 100 Angstroms of the membrane. PLL was also detected at the true surface (the outermost monolayer) of the microcapsules. The exposure of PLL does not appear to result from defects in the outer alginate coating. This physicochemical model of APA microcapsules could explain their immunogenicity and will play an important role in the optimization of the microcapsule design.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2005.05.007DOI Listing

Publication Analysis

Top Keywords

physicochemical model
8
micrometric/nanometric scale
8
apa microcapsules
8
membrane pll
8
pll
5
model alginate-poly-l-lysine
4
microcapsules
4
alginate-poly-l-lysine microcapsules
4
microcapsules defined
4
defined micrometric/nanometric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!