We have investigated collisions between Ar and alkanethiolate self-assembled monolayers (SAMs) using classical trajectory calculations with several potential-energy surfaces. The legitimacy of the potential-energy surfaces is established through comparison with molecular-beam data and ab initio calculations. Potential-energy surfaces used in previous work overestimate the binding of Ar to the SAM, leading to larger energy transfer than found in the experiments. New calculations, based on empirical force fields that better reproduce ab initio calculations, exhibit improved agreement with the experiments. In particular, polar-angle-dependent average energies calculated with explicit-atom potential-energy surfaces are in excellent agreement with the experiments. Polar- and azimuthal-angle-dependent product translational energies are examined to gain deeper insight into the dynamics of Ar+SAM collisions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.1924543 | DOI Listing |
Phys Chem Chem Phys
January 2025
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, Casilla de Correo 16, Sucursal 4, (1900) La Plata, Argentina.
The dependence of the rate constant of the recombination reaction of CCl and NO radicals on temperature and pressure was studied. Quantum-chemical calculations were employed to characterize relevant aspects of the potential energy surface for this process. The limiting rate constants between 300 and 2000 K were analyzed using the unimolecular reactions theory.
View Article and Find Full Text PDFSci Data
January 2025
IBM Research, Hursley, SO21 2JN, UK.
A significant challenge in computational chemistry is developing approximations that accelerate ab initio methods while preserving accuracy. Machine learning interatomic potentials (MLIPs) have emerged as a promising solution for constructing atomistic potentials that can be transferred across different molecular and crystalline systems. Most MLIPs are trained only on energies and forces in vacuum, while an improved description of the potential energy surface could be achieved by including the curvature of the potential energy surface.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, KAIST, Daejeon, Republic of Korea.
Despite its profound significance, the molecular structural changes near the transition state, driven by the vibronic coupling, have remained largely unexplored, leaving a crucial aspect of chemical reactions shrouded in uncertainty. Herein, the dynamical behavior of the reactive flux on the verge of chemical bond breakage was revealed through the spectroscopic characterization of a large amplitude vibrational motion. Highly excited internal rotor states of S methylamine (CHND) report on the structural change as the molecule approaches the transition state, indicating that the quasi-free internal rotation is strongly coupled to the reaction coordinate as their energies near the maximum of the reaction barrier for the N-D chemical bond predissociation.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
HUN-REN Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary.
J Phys Chem A
January 2025
Institute of Modern Physics, Shaanxi Key Laboratory for Theoretical Physics Frontiers, Northwest University, Xi'an, Shaanxi 710127, China.
The full-dimensional potential energy surface (PES) for the photodissociation of HNCS in the S(″) electronic state has been built up by the neural network method based on more than 48,000 points, which were calculated at the multireference configuration interaction level with Davidson correction using the augmented correlation consistent polarized valence triple-ζ basis set. It was found that two minima, namely, and isomers of HNCS, and seven stationary points exist on the S PES for the three dissociation pathways: HNCS(S) → H + NCS/HNC + S(D)/HN(Δ) + CS(Σ). The dissociation energies of two lowest product channels H + NCS and HNC + S(D) calculated on the PES are in good agreement with experimental results, validating the high accuracy of the PES.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!