Water models based on a single potential energy surface and different molecular degrees of freedom.

J Chem Phys

Centro de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62251 Cuernavaca, Morelos, Mexico.

Published: June 2005

Up to now it has not been possible to neatly assess whether a deficient performance of a model is due to poor parametrization of the force field or the lack of inclusion of enough molecular properties. This work compares several molecular models in the framework of the same force field, which was designed to include many-body nonadditive effects: (a) a polarizable and flexible molecule with constraints that account for the quantal nature of the vibration [B. Hess, H. Saint-Martin, and H. J. C. Berendsen, J. Chem. Phys. 116, 9602 (2002), H. Saint-Martin, B. Hess, and H. J. C. Berendsen, J. Chem. Phys. 120, 11133 (2004)], (b) a polarizable and classically flexible molecule [H. Saint-Martin, J. Hernandez-Cobos, M. I. Bernal-Uruchurtu, I. Ortega-Blake, and H. J. C. Berendsen, J. Chem. Phys. 113, 10899 (2000)], (c) a polarizable and rigid molecule, and finally (d) a nonpolarizable and rigid molecule. The goal is to determine how significant the different molecular properties are. The results indicate that all factors--nonadditivity, polarizability, and intramolecular flexibility--are important. Still, approximations can be made in order to diminish the computational cost of the simulations with a small decrease in the accuracy of the predictions, provided that those approximations are counterbalanced by the proper inclusion of an effective molecular property, that is, an average molecular geometry or an average dipole. Hence instead of building an effective force field by parametrizing it in order to reproduce the properties of a specific phase, a building approach is proposed that is based on adequately restricting the molecular flexibility and/or polarizability of a model potential fitted to unimolecular properties, pair interactions, and many-body nonadditive contributions. In this manner, the same parental model can be used to simulate the same substance under a wide range of thermodynamic conditions. An additional advantage of this approach is that, as the force field improves by the quality of the molecular calculations, all levels of modeling can be improved.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.1931567DOI Listing

Publication Analysis

Top Keywords

force field
16
berendsen chem
12
chem phys
12
molecular
8
molecular properties
8
many-body nonadditive
8
flexible molecule
8
rigid molecule
8
water models
4
models based
4

Similar Publications

The performance of Cu-exchanged chabazite (Cu-CHA) for the ammonia-assisted selective catalytic reduction of NO (NH-SCR) depends critically on the presence of paired complexes. Here, a machine-learning force field augmented with long-range Coulomb interactions is developed to investigate the effect of Al-distribution and Cu-loading on the mobility and pairing of complexes. Performing unbiased and constrained molecular dynamics simulations, we obtain unique information inaccessible to first-principle calculations and experiments.

View Article and Find Full Text PDF

Applications of innovative synthetic strategies in anticancer drug Discovery: The Driving Force of new chemical reactions.

Bioorg Med Chem Lett

January 2025

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China. Electronic address:

The discovery of novel anticancer agents remains a critical goal in medicinal chemistry, with innovative synthetic methodologies playing a pivotal role in advancing this field. Recent breakthroughs in CH activation reactions, cyclization reactions, multicomponent reactions, cross-coupling reactions, and photo- and electro-catalytic reactions have enabled the efficient synthesis of new molecular scaffolds exhibiting potent biological activities, including anticancer properties. These methodologies have facilitated the functionalization of natural products, the modification of bioactive molecules, and the generation of entirely new compounds, many of which demonstrate strong antitumor activity.

View Article and Find Full Text PDF

The droplet dynamics of asymmetrical impingement on moving ridged surface.

J Colloid Interface Sci

January 2025

School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093 China. Electronic address:

Hypothesis: The depth of research into the mechanism of droplet impacting structured surfaces dictates the efficacy of their applications. The impact stress generated when a droplet impacts a surface is a pivotal factor influencing the efficiency of surface applications, ultimately determining the extent of surface wear. Despite the systematic examination of impact force, there remains a scarcity of research on impact stress and its mitigation strategies.

View Article and Find Full Text PDF

Desalination of seawater by forward osmosis is a technology potentially able to address the global water scarcity problem. The major challenge limiting its widespread practical application is the design of a draw solute that can be separated from water by an energetically efficient process and then reused for the next cycle. Recent experiments demonstrate that a promising draw solute for forward-osmosis desalination is tetrabutylphosphonium 2,4,6-trimethylbenzenesulfonate ([P][TMBS]).

View Article and Find Full Text PDF

Magnaporthe oryzae is the causal agent of rice blast, one of the most serious diseases affecting rice cultivation around the world. During plant infection, M. oryzae forms a specialised infection structure called an appressorium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!